Tactile sensitivity in ultrasonic haptics: Do different parts of hand and different rendering methods have an impact on perceptual threshold?
Department of Communication Engineering, Jilin University, Jilin 130012, China
Abstract
Keywords: Ultrasonic tactile ; Rendering methods ; Amplitude modulation ; Perceptual threshold ; Human-computer interaction
Content
/2-2019.0009/media/e5670f4a-e769-4b0b-ba7e-62e4165857a0-image001.jpeg)
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F002.jpg)
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F003.jpg)
Experiment Block | Experiment Index | Experiment Conditions |
---|---|---|
1 | 1 | α > 0, the focus point moves in a circle, 1 cycle per second |
1 | 2 | α = 0, the focus point moves in a circle, 1 cycle per second |
2 | 3 | The focus point moves in a line |
2 | 4 | The focus point is fixed at the center of the palm |
3 | 5 | The focus point is fixed at the tip of the middle finger |
3 | 6 | The focus point is fixed at the root of the middle finger |
4 | 7 | The focus point moves in a circle, 3 cycles per second |
4 | 8 | The focus point moves in a circle, 1 cycle per 3 seconds |
4 | 9 | The focus point moves in a circle, 3 cycles per second |
5 | 10 | Four focus points move in a circle, 1 cycle per 3 seconds |
5 | 11 | Four focus points move in a circle, 1 cycle per second |
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F010.jpg)
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F011.jpg)
Center of palm vs. root of middle finger | Center of palm vs. tip of middle finger | Root of middle finger vs. tip of middle finger | |
---|---|---|---|
p-value | 0.60 | 0.18 | 0.04 |
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F004.jpg)
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F005.jpg)
Fixed focus point vs. circle | Fixed focus point vs. line | Line vs. circle | |
---|---|---|---|
p-value | 0.14 | 0.28 | 0.31 |
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F006.jpg)
3 cycles per second vs. 1 cycle per 3 seconds | 3 cycles per second vs. 1 cycle per second | 1 cycle per 3 seconds vs. 1 cycle per second | |
---|---|---|---|
p-value | 0.06 | 0.15 | 0.39 |
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F007.jpg)
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F008.jpg)
/2-2019.0009/alternativeImage/e5670f4a-e769-4b0b-ba7e-62e4165857a0-F009.jpg)
Reference
Hayward V, Cruz-Hernandez M. Tactile display device using distributed lateral skin stretch. In: Proceedings of The Haptic Interfaces for Virtual Environment and Teleoperator Systems Symposium. New York, USA, ASME, 2000, 69(2): 1309–1314
Wiesendanger M. Squeeze film air bearings using piezoelectric bending elements. Verlag nicht Ermittelbar, 2001
Mallinckrodt E, Hughes A L, Sleator W. Perception by the skin of electrically induced vibrations. Science, 1953, 118(3062): 277–278 DOI:10.1126/science.118.3062.277
Obrist M, Seah S A, Subramanian S. Talking about tactile experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Paris, France, ACM, 2013, 1659–1668 DOI:10.1145/2470654.2466220
Frier W, Ablart D, Chilles J, Long B, Giordano M, Obrist M, Subramanian S. Using spatiotemporal modulation to draw tactile patterns in mid-air//Haptics: Science, Technology, and Applications. Cham: Springer International Publishing, 2018, 270–281 DOI:10.1007/978-3-319-93445-7_24
Iwamoto T, Tatezono M, Shinoda H. Non-contact method for producing tactile sensation using airborne ultrasound// Haptics: Perception, Devices and Scenarios. Berlin, Heidelberg: Springer Berlin Heidelberg, 504–513 DOI:10.1007/978-3-540-69057-3_64
Hoshi T, Takahashi M, Iwamoto T, Shinoda H. Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Transactions on Haptics 2010, 3(3): 155–165 DOI:10.1109/toh.2010.4
Inoue S, Makino Y, Shinoda H. Producing airborne ultrasonic 3D tactile image by time reversal field rendering. In: SICE Annual Conference (SICE). Sapporo, Japan, IEEE, 2014, 1360–1365 DOI:10.1109/sice.2014.6935269
Spelmezan D, Gonzalez R M, Subramanian S. SkinHaptics: Ultrasound focused in the hand creates tactile sensations. In: Haptics Symposium (HAPTICS).Philadelphia, PA, USA, IEEE, 2016, 98–105 DOI:10.1109/haptics.2016.7463162
Jones L A, Lederman S J. Applied aspects of hand function//Human Hand Function. Oxford University Press, 2006, 179–203 DOI:10.1093/acprof:oso/9780195173154.003.0010
Hasegawa K, Shinoda H. Aerial vibrotactile display based on multiunit ultrasound phased array. IEEE Transactions on Haptics 2018, 11(3): 367–377 DOI:10.1109/toh.2018.2799220
Kervegant C, Raymond F, Graeff D, Castet J. Touch hologram in mid-air. In: ACM SIGGRAPH 2017 Emerging Technologies. Los Angeles, California, USA, ACM, 2017, 23 DOI:10.1145/3084822.3084824
Long B, Seah S A, Carter T, Subramanian S. Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Transactions on Graphics 2014, 33(6): 1–10 DOI:10.1145/2661229.2661257
Linschoten M R, Harvey L O, Eller P M, Jafek B W. Fast and accurate measurement of taste and smell thresholds using a maximum-likelihood adaptive staircase procedure. Perception & Psychophysics 2001, 63(8): 1330–1347 DOI:10.3758/bf03194546