Haptic display for virtual reality: progress and challenges
1. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China
2. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
3. Peng Cheng Laboratory, Shenzhen 518055, China
4. Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand
5. School of Computer Science and the Robotics Engineering Program, Worcester Polytechnic Institute, Worcester, MA 01609-2280, USA
Abstract
Keywords: Haptic display ; Virtual reality ; Desktop haptics ; Surface haptics ; Wearable haptics ; Multimodal haptics
Content

































Name of the device |
Company | Motion track DoF |
Force feedback |
Tactile feedback |
Actuation principle |
Sensing principle |
Typical features |
---|---|---|---|---|---|---|---|
CyberGrasp[51] | Immersion | — | One actuator per finger | — |
Electric motor |
22-sensor CyberGlove device | Feel the size and shape of virtual objects |
H-glove[52] | Haption | Each finger possesses 3 DoF | Force feedback on 3 fingers | — |
Electric motor |
— | Possibility to attach it to a Virtuose 6D |
Dexmo[53] | DextaRobotics | Tracking 11 DoF for hand | Force feedback on 5 fingers | Three linear resonant actuators (LRA) |
Electric motor |
Rotary sensors | Feel the shape, size and stiffness of virtual objects |
Haptx glove[54] | Haptx | Tracking 6 DoF per digit | Lightweight exoskeleton applies up to 4 lbs per finger | 130 stimuli points | Microfluidic array | Magnetic tracking | Feel the shape, texture and motion of virtual objects; sub-millimeter precision |
Plexus[55] | Plexus | 21 DoF per hand | — | One tactile actuator per finger | — | Using tracing ada-pters for the Vive, Oculus and Windows MR devices | Track with 0.01 degree precision |
Sense glove[56] | Sense Glove | 20 DoF finger tracking | Force-feedback is applied to each fingertip in the flexion or grasping direction | One haptic motor per finger | Electric motor | Sensor | Feel the shape and density of virtual objects |
Avatar VR[57] | NeuroDigital Tech. | Full Finger Tracking | — | Ten vibrotactile actuators | Vibrotactile array | 6x 9-AXIS IMUs | Track the movements of chest, arms and hands |
Maestro[58] | Contact CI | 13 DoF hand tracking | 5 Exotendon restriction mechanism | Vibration feedback at each fingertip | — | Motion capture system combined with flex sensors | Precise gesture capture, nuanced vibration feedback and smart finger restriction |
Senso Glove[59] | Senso Device | Full 3d tracking for each finger | — | 5 vibration motors | — | 7 IMU sensors | Precisely track fingers and hands position in space and provide haptic feedback |
Dextres glove[60] | EPFL and ETH Zurich | — | Holding force on each finger | — | Electrostatic attraction | — | Weighing less than 8 grams per finger |
VRgluv[61] | VRgluv | 12 DoF for the fingers on each hand | Apply up to 5 lbs of varying force per finger | — | DC motors | 5 sensors per finger | Simulate stiffness, shape, and mechanical features |



Reference
Sutherland I E. The ultimate display. Multimedia: From Wagner to virtual reality, 1965, 506−508
Goertz R C. Master-Slave Manipulator. Office of Scientific and Technical Information (OSTI), 1949 DOI:10.2172/1054625
van Dam A. Post-WIMP user interfaces. Communications of the ACM, 1997, 40(2): 63–67 DOI:10.1145/253671.253708
Salisbury K, Brock D, Massie T, Swarup N, Zilles C. Haptic rendering: programming touch interaction with virtual objects. In: Proceedings of the 1995 symposium on Interactive 3D graphics. Monterey, California, USA: ACM, 1995: 123–130 DOI:10.1145/199404.199426
Srinivasan M A, Basdogan C. Haptics in virtual environments: Taxonomy, research status, and challenges. Computers & Graphics, 1997, 21(4): 393–404 DOI:10.1016/s0097-8493(97)00030-7
von Thomas Ammann S, Ruspini D C, Kolarov K, Khatib O. The haptic display of complex graphical environments. In: The 24th annual Conference on Computer Graphics and Interactive Techniques, 1997, 345–352
Massie T, Salisbury K. The PHANToM Haptic Interface: A Device for Probing Virtual Objects. In: ASME International Mechanical Engineering Congress and Exhibition, 1994, 295–302
Puterbaugh U W M K. Six degree-offreedom haptic rendering using voxel sampling. In: ACM SIGGRAPH, 1999: 401–408
Lin M C, Otaduy M. Haptic Rendering: Foundations, Algorithms and Applications. In: CRC Press, 2008
Otaduy M A, Garre C, Lin M C. Representations and algorithms for force-feedback display. Proceedings of the IEEE, 2013, 101(9): 2068–2080 DOI:10.1109/jproc.2013.2246131
Ortega M, Redon S, Coquillart S. A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(3): 458–469 DOI:10.1109/tvcg.2007.1028
MacLean K E. Haptic interaction design for everyday interfaces. Reviews of Human Factors and Ergonomics, 2008, 4(1): 149–194 DOI:10.1518/155723408x342826
Wang D X, Shi Y J, Liu S, Zhang Y R, Xiao J. The influence of handle-avatar mapping uncertainty on torque fidelity of 6-DOF haptic rendering. World Haptics Conference (WHC). Daejeon, South Korea, 2013: 325–330 DOI:10.1109/WHC.2013.6548429
Wang D X, Shi Y J, Liu S, Zhang Y R, Xiao J. Haptic simulation of organ deformation and hybrid contacts in dental operations. IEEE Transactions on Haptics, 2014, 7(1): 48–60 DOI:10.1109/toh.2014.2304734
Yu G, Wang D X, Zhang Y R, Xiao J. Simulating sharp geometric features in six degrees-of-freedom haptic rendering. IEEE Transactions on Haptics, 2015, 8(1): 67–78 DOI:10.1109/toh.2014.2377745
Wang D X, Zhang Y R, Hou J X, Wang Y, Lv P, Chen Y G, Zhao H. Idental: A haptic-based dental simulator and its preliminary user evaluation. IEEE Transactions on Haptics, 2012, 5(4): 332–343 DOI:10.1109/toh.2011.59
Fukumoto M, Sugimura T. Active click: tactile feedback for touch panels. In: Extended Abstracts on Human Factors in Computing Systems. Seattle, Washington: ACM, 2001: 121–122 DOI:10.1145/634067.634141
Yatani K, Truong K N. SemFeel: a user interface with semantic tactile feedback for mobile touch-screen devices. In: Proceedings of the 22nd annual ACM symposium on User interface software and technology. Victoria, BC, Canada: ACM, 2009: 111–120 DOI:10.1145/1622176.1622198
Sawada H, Takeda Y. Tactile pen for presenting texture sensation from touch screen. 2015 8th International Conference on Human System Interaction (HSI). Warsaw, Poland, 2015, 334–339 DOI:10.1109/HSI.2015.7170689
Yang G H, Jin M S, Jin Y, Kang S. T-mobile: Vibrotactile display pad with spatial and directional information for hand-held device. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, Taiwan, China: 2010, 5245–5250 DOI:10.1109/IROS.2010.5651759
Poupyrev I, Rekimoto J, Maruyama S. TouchEngine: a tactile display for handheld devices. In: Human Factors in Computing Systems. 2002, 20(25): 644–645
Kim S H, Sekiyama K, Fukuda T, Tanaka K, Itoigawa K. Development of dynamically Re-formable input device in tactile and visual interaction. In: International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan: 2007: 544–549 DOI:10.1109/MHS.2007.4420914
Kajimoto H. Enlarged electro-tactile display with repeated structure. In: IEEE World Haptics Conference, Istanbul, Turkey: IEEE, 2011: 575–579 DOI:10.1109/WHC.2011.5945549
Harrison C, Hudson S E. Providing dynamically changeable physical buttons on a visual display. In: the SIGCHI Conference on Human Factors in Computing Systems. Boston, MA, USA: 2009, 299–308
Kim S, Sekiyama K, Fukuda T. User-adaptive interface with reconfigurable keypad for in-vehicle information systems. In: International Symposium on Micro-NanoMechatronics and Human Science. Nagoya, Japan, 2008, 501–506 DOI:10.1109/MHS.2008.4752504
Watanabe T, Fukui S. A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: IEEE International Conference on Robotics and Automation. Nagoya, Japan: IEEE, 1995: 1134–1139 DOI:10.1109/ROBOT.1995.525433
Carter T, Seah S A, Long B, Drinkwater B, Subramanian S. UltraHaptics: multi-point mid-air haptic feedback for touch surfaces. In: Proceedings of the 26th annual ACM symposium on User interface software and technology. St. Andrews, Scotland, United Kingdom: ACM, 2013: 505–514 DOI:10.1145/2501988.2502018
Winfield L, Glassmire J, Colgate J E, Peshkin M. T-PaD: tactile pattern display through variable friction reduction. In: Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Tsukaba, Japan: 2007, 421–426 DOI:10.1109/WHC.2007.105
Marchuk N D, Colgate J E, Peshkin M A. Friction measurements on a large area TPaD. In: IEEE Haptics Symposium. Waltham, MA, USA: IEEE, 2010: 317–320 DOI:10.1109/HAPTIC.2010.5444636
Mullenbach J, Shultz C, Piper A M, Peshkin M, Colgate J E. Surface haptic interactions with a TPad tablet. In: Proceedings of the adjunct publication of the 26th annual ACM symposium on User interface software and technology. St. Andrews, Scotland, United Kingdom: ACM, 2013: 7–8 DOI:10.1145/2508468.2514929
Yang Y, Zhang Y R, Lemaire-Semail B, Dai X W. Enhancing the Simulation of Boundaries by Coupling Tactile and Kinesthetic Feedback. Haptics: Neuroscience, Devices, Modeling, and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 19–26 DOI:10.1007/978-3-662-44196-1_3
Vezzoli E, Messaoud W B, Amberg M, Giraud F, Lemaire-Semail B, Bueno M A. Physical and perceptual independence of ultrasonic vibration and electrovibration for friction modulation. IEEE Transactions on Haptics, 2015, 8(2): 235–239 DOI:10.1109/toh.2015.2430353
Kim H, Kang J, Kim K D, Lim K M, Ryu J. Method for providing electrovibration with uniform intensity. IEEE Transactions on Haptics, 2015, 8(4): 492–496 DOI:10.1109/toh.2015.2476810
Mallinckrodt E, Hughes A L, Sleator W. Perception by the skin of electrically induced vibrations. Science, 1953, 118(3062): 277–278 DOI:10.1126/science.118.3062.277
Linjama J, Mäkinen V. E-sense screen: Novel haptic display with capacitive electrosensory interface. In: 4th Workshop for Haptic and Audio Interaction Design, 2009
Bau O, Poupyrev I, Israr A, Harrison C. TeslaTouch: electrovibration for touch surfaces. In: Proceedings of the 23nd annual ACM symposium on User interface software and technology. New York, New York, USA: ACM, 2010: 283–292 DOI:10.1145/1866029.1866074
Radivojevic Z, Beecher P, Bower C, Haque S, Andrew P, Hasan T, Bonaccorso F, Ferrari A C, Henson B. Electrotactile touch surface by using transparent graphene. In: Proceedings of the 2012 Virtual Reality International Conference. Laval, France: ACM, 2012: 1–3 DOI:10.1145/2331714.2331733
Vasudevan H, Manivannan M. Tangible images: runtime generation of haptic textures from images. 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Reno, NE, USA, 2008: 357–360 DOI:10.1109/HAPTICS.2008.4479971
Saga S, Deguchi K. Lateral-force-based 2. 5-dimensional tactile display for touch screen. IEEE Haptics Symposium (HAPTICS), Vancouver, BC, Canada: IEEE, 2012: 15–22 DOI:10.1109/HAPTIC.2012.6183764
KimS-C, Israr A, Poupyrev I. Tactile rendering of 3D features on touch surfaces. In: Proceedings of the 26th annual ACM symposium on User interface software and technology. St. Andrews, Scotland, United Kingdom: ACM, 2013: 531−538 DOI:10.1145/2501988.2502020
Xu C, Israr A, Poupyrev I, Bau O, Harrison C. Tactile display for the visually impaired using TeslaTouch. In: Extended Abstracts on Human Factors in Computing Systems. Vancouver, BC, Canada: ACM, 2011, 317–322 DOI:10.1145/1979742.1979705
Israr A, Bau O, KimS-C, Poupyrev I. Tactile feedback on flat surfaces for the visually impaired. In: Human Factors in Computing Systems. Austin, Texas, USA: ACM, 2012: 1571–1576 DOI:10.1145/2212776.2223674
Hoggan E, Brewster S A, Johnston J. Investigating the effectiveness of tactile feedback for mobile touchscreens. In: the SIGCHI Conference on Human Factors in Computing Systems. Florence, Italy, 2008, 1573–1582
Levesque V, Oram L, MacLean K, Cockburn A, Marchuk N D, Johnson D, Colgate J E, Peshkin M A. Enhancing physicality in touch interaction with programmable friction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Vancouver, BC, Canada: ACM; 2011: 2481–2490 DOI:10.1145/1978942.1979306
Lévesque V, Oram L, MacLean K. Exploring the design space of programmable friction for scrolling interactions. Haptics Symposium (HAPTICS). Vancouver, BC, Canada: IEEE, 2012, 23–30 DOI:10.1109/HAPTIC.2012.6183765
Shin H, Lim J M, Lee J U, Lee G, Kyung K U. Effect of tactile feedback for button GUI on mobile touch devices. ETRI Journal,2014,36(6):979–987 DOI:10.4218/etrij.14.0114.0028
Liu G H, Sun X Y, Wang D X, Liu Y, Zhang Y R. Effect of electrostatic tactile feedback on accuracy and efficiency of Pan gestures on touch screens. IEEE Transactions on Haptics, 2018, 11(1): 51–60 DOI:10.1109/toh.2017.2742514
Tran J J, Trewin S, Swart C, John B E, Thomas J C. Exploring pinch and spread gestures on mobile devices. In: Proceedings of the 15th international conference on Human-computer interaction with mobile devices and services. Munich, Germany: ACM, 2013: 151–160 DOI:10.1145/2493190.2493221
Wang D X, Song M, Naqash A, Zheng Y K, Xu W L, Zhang Y R. Toward whole-hand kinesthetic feedback: A survey of force feedback gloves. IEEE Transactions on Haptics, 2018: 1 DOI:10.1109/toh.2018.2879812
Pacchierotti C, Sinclair S, Solazzi M, Frisoli A, Hayward V, Prattichizzo D. Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives. IEEE Transactions on Haptics, 2017, 10(4): 580–600 DOI:10.1109/toh.2017.2689006
CyberGlove Systems LLC.http://www.cyberglovesystems. com/
HGlove-HAPTIONSA.https://www.haption.com/en/products-en/hglove-en.html
http://www.dextarobotics.com
HaptX|HapticglovesforVR training, simulation, anddesign. http://haptx.com/
Plexus/High-performanceVR/AR Gloves.http://plexus.im/
Sense Glove | Sense Glove.https://www.senseglove.com/
Avatar VR-NeuroDigital Technologies.http://www.neurodigital.es/avatarvr/
Contact CI.https://contactci.co/
Senso|Senso Glove|Senso Suit-probably the best controller for Virtual and Augmented reality.https: //senso. me/
Ultra-light gloves let users “touch” virtual objects". https://actu.epfl.ch/news/ultra-light-gloves-let-users-touch-virtual-objects/
VRgluv-Force Feedback Gloves for Virtual Reality. https://vrgluv.com/#contact
Zheng Y K, Wang D X, Wang Z Q, Zhang Y, Zhang Y R, Xu W L. Design of a lightweight force-feedback glove with a large workspace. Engineering, 2018, 4(6): 869–880 DOI:10.1016/j.eng.2018.10.003
Zhang Y, Wang D X, Wang Z Q, Wang Y P, Wen L, Zhang Y R. A two-fingered force feedback glove using soft actuators. Haptics Symposium (HAPTICS), San Francisco, CA, USA: IEEE, 2018: 186–191 DOI:10.1109/HAPTICS.2018.8357174
Gabardi M, Solazzi M, Leonardis D, Frisoli A. A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. Haptics Symposium (HAPTICS). Philadelphia, PA, USA: IEEE, 2016: 140–146 DOI:10.1109/HAPTICS.2016.7463168
Schorr S B, Okamura A M. Three-dimensional skin deformation as force substitution: Wearable device design and performance during haptic exploration of virtual environments. IEEE Transactions on Haptics, 2017, 10(3): 418–430 DOI:10.1109/toh.2017.2672969
Prattichizzo D, Chinello F, Pacchierotti C, Malvezzi M. Towards wearability in fingertip haptics: A 3-DoF wearable device for cutaneous force feedback. IEEE Transactions on Haptics, 2013, 6(4): 506–516 DOI:10.1109/toh.2013.53
Talvas A, Marchal M, Duriez C, Otaduy M A. Aggregate constraints for virtual manipulation with soft fingers. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(4): 452–461 DOI:10.1109/tvcg.2015.2391863
Jacobs J, Stengel M, Froehlich B. A generalized God-object method for plausible finger-based interactions in virtual environments. IEEE Symposium on 3D User Interfaces (3DUI). Costa Mesa, CA, USA: 2012, 43–51 DOI:10.1109/3DUI.2012.6184183
Cui T, Song A G, Xiao J. Modeling global deformation using circular beams for haptic interaction. RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA: IEEE, 2009, 1743–1748 DOI:10.1109/IROS.2009.5354710
Pacchierotti C, Salvietti G, Hussain I, Meli L, Prattichizzo D. The hRing: A wearable haptic device to avoid occlusions in hand tracking. Haptics Symposium (HAPTICS), Philadelphia, PA, USA, IEEE, 2016: 134–139 DOI:10.1109/HAPTICS.2016.7463167
Maisto M, Pacchierotti C, Chinello F, Salvietti G, de Luca A, Prattichizzo D. Evaluation of wearable haptic systems for the fingers in augmented reality applications. IEEE Transactions on Haptics, 2017, 10(4): 511–522 DOI:10.1109/toh.2017.2691328
Zachmann G, Rettig A. Natural and robust interaction in virtual assembly simulation. In: Eighth ISPE International Conference on Concurrent Engineering: Research and Applications (ISPE/CE2001), 2001, 425–434
Moehring M, Froehlich B. Pseudo-physical interaction with a virtual car interior in immersive environments. In: the 11th Eurographics conference on Virtual Environments. Aalborg, Denmark: 2005, 181−–189
Holz D, Ullrich S, Wolter M, Kuhlen T. Multi-Contact Grasp Interaction for Virtual Environments. Journal of Virtual Reality and Broadcasting, 2008, 5
Borst C W, Indugula A P. Realistic virtual grasping. In: VR 2005, Virtual Reality. Bonn, Germany: IEEE, 2005, 91–98 DOI:10.1109/VR.2005.1492758
Ott R, de Perrot V, Thalmann D, Vexo F. MHaptic: a haptic manipulation library for generic virtual environments. In: International Conference on Cyberworlds. Hannover, Germany, 2007: 338–345 DOI:10.1109/CW.2007.54
Gourret J P, Thalmann N M, Thalmann D. Simulation of object and human skin formations in a grasping task. ACM SIGGRAPH Computer Graphics, 1989, 23(3): 21–30 DOI:10.1145/74334.74335
Garre C, Hernández F, Gracia A, Otaduy M A. Interactive simulation of a deformable hand for haptic rendering. In: IEEE World Haptics Conference. Istanbul, Turkey: IEEE, 2011, 239−244 DOI:10.1109/WHC.2011.5945492
Okamoto S, Nagano H, Yamada Y. Psychophysical dimensions of tactile perception of textures. IEEE Transactions on Haptics, 2013, 6(1): 81–93 DOI:10.1109/toh.2012.32
Lederman S J, Klatzky R L. Haptic perception: A tutorial. Attention, Perception & Psychophysics, 2009, 71(7): 1439–1459 DOI:10.3758/app.71.7.1439
Rossignac J, Allen M, Book W J, Glezer A, Ebert-Uphoff I, Shaw C, Rosen D, Askins S, Bai J, Bosscher P, Gargus J, Kim B M, Llamas I, Nguyen A, Yuan G, Zhu H H. Finger sculpting with Digital Clay: In: 3D shape input and output through a computer-controlled real surface. 2003 Shape Modeling International. Seoul, South Korea: 2003, 229–231 DOI:10.1109/SMI.2003.1199620
Stanley A A, Okamura A M. Deformable model-based methods for shape control of a haptic jamming surface. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(2): 1029–1041 DOI:10.1109/tvcg.2016.2525788
Lu L, Zhang Y, Guo X. A Surface Texture Display for Flexible Virtual Objects. In: AsiaHaptics Conference, 2018
Fani S, Ciotti S, Battaglia E, Moscatelli A, Bianchi M. W-FYD: A wearable fabric-based display for haptic multi-cue delivery and tactile augmented reality. IEEE Transactions on Haptics, 2018, 11(2): 304–316 DOI:10.1109/toh.2017.2708717
Tong Q, Yuan Z, Liao X, Zheng M, Yuan T, Zhao J. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(12): 3123−3136
Adel A, Micheal M M, Self M A, Abdennadher S, Khalil I S M, Rendering of Virtual Volumetric Shapes Using an Electromagnetic-Based Haptic Interface. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: 2018, 1–9
Mosadegh B, Polygerinos P, Keplinger C, Wennstedt S, Shepherd R F, Gupta U, Shim J, Bertoldi K, Walsh C J, Whitesides G M. Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials, 2014, 24(15): 2163–2170 DOI:10.1002/adfm.201303288
Ge Q, Sakhaei A H, Lee H, Dunn C K, Fang N X, Dunn M L. Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports, 2016, 6: 31110 DOI:10.1038/srep31110
Ware T H, McConney M E, Wie J J, Tondiglia V P, White T J. Voxelated liquid crystal elastomers. Science, 2015, 347(6225): 982–984 DOI:10.1126/science.1261019
Culbertson H, López Delgado J J, Kuchenbecker K J. One hundred data-driven haptic texture models and open-source methods for rendering on 3D objects. IEEE Haptics Symposium (HAPTICS), Houston, TX, USA: 2014, 319–325 DOI:10.1109/HAPTICS.2014.6775475
Strese M, Lee J Y, Schuwerk C, Han Q F, Kim H G, Steinbach E. A haptic texture database for tool-mediated texture recognition and classification. In: International Symposium on Haptic, Audio and Visual Environments and Games (HAVE) Proceedings. Richardson, TX, USA: IEEE, 2014, 118–123 DOI:10.1109/HAVE.2014.6954342
Strese M, Boeck Y, Steinbach E. Content-based surface material retrieval. World Haptics Conference (WHC). Munich, Germany: IEEE, 2017, 352–357 DOI:10.1109/WHC.2017.7989927
Zheng H T, Fang L, Ji M Q, Strese M, Ozer Y, Steinbach E. Deep learning for surface material classification using haptic and visual information. IEEE Transactions on Multimedia, 2016, 18(12): 2407–2416 DOI:10.1109/tmm.2016.2598140
Stevens J C. Thermal intensification of touch sensation: Further extensions of the Weber phenomenon. Sensory Processes, 1979, 3(3), 240–248
Charpentier A. Analyse experimentale de quelques elements de la sensation de poids. Archive de Physiologie normale et pathologiques, 1981, 3, 122–135
Ellis R R, Lederman S J. The material-weight illusion revisited. Perception & Psychophysics, 1999, 61(8): 1564–1576 DOI:10.3758/bf03213118
Ellis R R, Lederman S J. The golf-ball illusion: Evidence for top-down processing in weight perception. Perception, 1998, 27(2): 193–201 DOI:10.1068/p270193
Craig A, Bushnell M. The thermal grill illusion: Unmasking the burn of cold pain. Science, 1994, 265(5169): 252–255 DOI:10.1126/science.8023144
Leung A Y, Wallace M S, Schulteis G, Yaksh T L. Qualitative and quantitative characterization of the thermal grill. Pain, 2005, 116(1): 26–32 DOI:10.1016/j.pain.2005.03.026