2019, 1(1): 55-83
Published Date:2019-2-20 DOI: 10.3724/SP.J.2096-5796.2018.0008
A survey on image and video stitching
Abstract
Keyword
Cite this article
References
1.
Szeliski R. Image Alignment and Stitching: A Tutorial. Foundations and Trends® in Computer Graphics and Vision,2007; 2(1): 1–104 DOI:10.1561/0600000009
2.
Kaynig V, Fischer B, Buhmann J M. Probabilistic image registration and anomaly detection by nonlinear warping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA, 2008, 1–8 DOI:10.1109/CVPR.2008.4587743
3.
Silva R M A, Gomes P B, Frensh T, Monteiro D. Real time 360° video stitching and streaming. In: ACM SIGGRAPH 2016 Posters. Anaheim, California: ACM, 2016: 1–2 DOI:10.1145/2945078.2945148
4.
Peleg S, Rousso B, Rav-Acha A, Zomet A. Mosaicing on adaptive manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1144–1154 DOI:10.1109/34.879794
5.
Levin A, Zomet A, Peleg S, Weiss Y. Seamless image stitching in the gradient domain. In: Computer Vision-ECCV 2004: 2004// 2004. Berlin, Heidelberg. Springer Berlin Heidelberg, 2004, 377–389
6.
Zomet A, Levin A, Peleg S, Weiss Y. Seamless image stitching by minimizing false edges. IEEE Transactions on Image Processing, 2006, 15(4): 969–977 DOI:10.1109/TIP.2005.863958
7.
Jia J, Tang C K. Eliminating structure and intensity misalignment in image stitching. In: Tenth IEEE International Conference on Computer Vision (ICCV'05). Beijing, China, 2005, 1651–1658 DOI:10.1109/ICCV.2005.87
8.
Brown M, Lowe D G. Recognizing Panoramas. In: Proceedings of the IEEE International Conference on Computer Vision. Nice, France, 2003, 3: 1218
9.
Brown M, Lowe D G. Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 2007, 74(1): 59–73 DOI:10.1007/s11263-006-0002-3
10.
Gao J, Kim S J, Brown M S. Constructing image panoramas using dual-homography warping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA, 201, 49–56 DOI:10.1109/CVPR.2011.5995433
11.
Duffin K L, Barrett W A. Fast focal length solution in partial panoramic image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA, 2001, II–II DOI:10.1109/CVPR.2001.991031
12.
Lin W Y, Liu S, Matsushita Y, Ng T T, Cheong L F. Smoothly varying affine stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA, 2011, 345–352 DOI:10.1109/CVPR.2011.5995314
13.
Zaragoza J, Chin T J, Brown M S, Suter D. As-projective-as-possible image stitching with moving DLT. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA, 2013, 2339–2346 DOI:10.1109/CVPR.2013.303
14.
He B, Yu S. Parallax-Robust Surveillance Video Stitching. 2016, 16(1):7 DOI:10.3390/s16010007
15.
Su T, Nie Y, Zhang Z, Sun H, Li G. Video stitching for hand-held inputs via combined video stabilization. In: SIGGRAPH ASIA 2016 Technical Briefs. Macao, China, 2016: 25
16.
Nie Y, Su T, Zhang Z, Sun H, Li G. Dynamic Video Stitching via Shakiness Removing. IEEE Transactions on Image Processing, 2018, 27(1): 164–178 DOI:10.1109/TIP.2017.2736603
17.
Lin K, Liu S, Cheong L F, Zeng B. Seamless video stitching from hand‐held camera inputs. Computer Graphics Forum, 2016, 35(2): 479–487 DOI:10.1111/cgf.12848
18.
Matsushita Y, Ofek E, Weina G, Xiaoou T, Heung-Yeung S. Full-frame video stabilization with motion inpainting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7):1150–1163 DOI:10.1109/TPAMI.2006.141
19.
Liu S, Yuan L, Tan P, Sun J. Bundled camera paths for video stabilization. ACM Trans. Graph. 2013, 32(4): 1–10 DOI:10.1145/2461912.2461995
20.
Szeliski R, Shum H Y. Creating full view panoramic image mosaics and texture-mapped models. In: SIGGRAPH. Los Angeles, 1997, 251–258
21.
Lee J, Kim B, Kim K, Kim Y, Noh J. Rich360: optimized spherical representation from structured panoramic camera arrays. ACM Transactions on Graphics (TOG), 2016, 35(4): 1–11 DOI:10.1145/2897824.2925983
22.
Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22: 1330–1334
23.
Zhi Q, Cooperstock J R. Toward dynamic image mosaic generation with robustness to parallax. IEEE Transactions on Image Processing, 2012, 21(1): 366–378 DOI:10.1109/TIP.2011.2162743
24.
Uyttendaele M, Eden A, Skeliski R. Eliminating ghosting and exposure artifacts in image mosaics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA, 2001, II–II DOI:10.1109/CVPR.2001.991005
25.
Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110 DOI:10.1023/B:VISI.0000029664.99615.94
26.
Harris C, Stephens M. A combined corner and edge detector. In: Proceedings of Alvey vision conference. Manchester, UK, 1988
27.
Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 2008, 110(3): 346–359 DOI:10.1016/j.cviu.2007.09.014
28.
Rosten E, Drummond T. Machine Learning for High-Speed Corner Detection. In: Computer Vision – ECCV 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, 430–443
29.
Liu W X, Chin T J. Correspondence Insertion for As-Projective-As-Possible Image Stitching. 2016
30.
Chang C H, Sato Y, Chuang Y Y. Shape-preserving half-projective warps for image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014, 3254–3261
31.
Lin K, Jiang N, L-F Cheong , Do M, Lu J. Seagull: seam-guided local alignment for parallax-tolerant image stitching. In: Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016, 370–385
32.
Herrmann C, Wang C, Bowen R S, Keyder E, Zabih R. Object-Centered Image Stitching. In: Computer Vision – ECCV 2018. Springer International Publishing, 2018, 846–861 DOI:10.1007/978-3-030-01219-9_50
33.
Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381–395 DOI:10.1145/358669.358692
34.
Guo H, Liu S, He T, Zhu S, Zeng B, Gabbouj M. Joint Video Stitching and Stabilization From Moving Cameras. IEEE Transactions on Image Processing, 2016, 25(11): 5491–5503 DOI:10.1109/TIP.2016.2607419
35.
Zou D, Tan P. Coslam: Collaborative visual slam in dynamic environments. IEEE transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 354–366 DOI:10.1109/TPAMI.2012.104
36.
Brown M, Hartley R I, Nistér D. Minimal solutions for panoramic stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA, 2007, 1–8 DOI:10.1109/CVPR.2007.383082
37.
Perazzi F, Sorkine-Hornung A, Zimmer H, Kaufmann P, Wang O, Watson S, Gross M. Panoramic video from unstructured camera arrays. Computer Graphics Forum. 2015, 34(2): 57–68 DOI:10.1111/cgf.12541
38.
Flynn J, Neulander I, Philbin J, Snavely N. Deepstereo: Learning to predict new views from the world's imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, 2016, 5515–5524
39.
Ufer N, Ommer B. Deep semantic feature matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017, 5929–5938 DOI:10.1109/CVPR.2017.628
40.
Deng J, Dong W, Socher R, Li L, Kai L, Li F-F. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA 2009, 248–255 DOI:10.1109/CVPR.2009.5206848
41.
Aberman K, Liao J, Shi M, et al. Neural Best-Buddies: Sparse Cross-Domain Correspondence. ACM Transactions on Graphics (TOG), 2018, 37(4): 69 DOI:10.1145/3197517.3201332
42.
Rocco I, Arandjelovic R, Sivic J. Convolutional neural network architecture for geometric matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017, 39–48 DOI:10.1109/CVPR.2017.12
43.
Jeon S, Kim S, Min D, Sohn K. PARN: Pyramidal Affine Regression Networks for Dense Semantic Correspondence Estimation. In: Proceedings of European Conference on Computer Vision. Munich, Germany, 2018, 355–371
44.
DOI: 10.1007/978-3-030-01231-1_22Zhou Y, Cao M, You J, Meng M, Wang Y, Zhou Z. MR Video Fusion: Interactive 3D Modeling and Stitching on Wide-baseline Videos. In: ACM Symposium on Virtual Reality Software and Technology. Tokyo, Japan: ACM, 2018, 1–11 DOI:10.1145/3281505.3281513
45.
Bujnák M, Sara R. A robust graph-based method for the general correspondence problem demonstrated on image stitching. In:2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007, 1–8 DOI:10.1109/ICCV.2007.4408884
46.
Šára R. The principle of stability applied to matching problems in computer vision. RR CTU–CMP–2007–17. Center for Machine Perception, Czech Technical University, 2007
47.
Collins R T. A space-sweep approach to true multi-image matching. In: Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA, 1996, 358–363 DOI:10.1109/CVPR.1996.517097
48.
Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124–1137 DOI:10.1109/TPAMI.2004.60
49.
Lin C C, Pankanti S U, Natesan Ramamurthy K, Aravkin A Y. Adaptive as-natural-as-possible image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, 2015,1155–1163
50.
Li N, Xu Y, Wang C. Quasi-homography warps in image stitching. IEEE Transactions on Multimedia, 2018, 20(6): 1365–1375 DOI:10.1109/TMM.2017.2771566
51.
Zhang F, Liu F. Parallax-tolerant image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014, 3262–3269
52.
Liu F, Gleicher M, Jin H, Agarwala A. Content-preserving warps for 3D video stabilization. In: Acm Siggraph. 2009, 1–9 DOI:10.1145/1576246.1531350
53.
Gao J, Li Y, Chin T J, Brown M S. Seam-Driven Image Stitching. In: Proceedings of Euro-Graphics. Girona, Spain, 2013, 45–48
54.
Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In: International Conference on Neural Information Processing Systems, 2015, 91–99
55.
Herrmann C, Wang C, Bowen R S, Keyder E, Krainin M, Liu C, Zabih R. Robust Image Stitching with Multiple Registrations. In: Computer Vision – ECCV 2018. Munich, Germany: Cham: Springer International Publishing, 2018, 53–69 DOI:10.1007/978-3-030-01216-8_4
56.
Chen Y S, Chuang Y Y. Natural Image Stitching with the Global Similarity Prior. In: Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016, 186–201 DOI:10.1007/978-3-319-46454-1_12
57.
Zhang G, He Y, Chen W, Jia J, Bao H. Multi-Viewpoint Panorama Construction With Wide-Baseline Images. IEEE Transactions on Image Processing, 2016, 25(7): 3099–3111 DOI:10.1109/TIP.2016.2535225
58.
Xiang T Z, Xia G S, Bai X, Zhang L. Image stitching by line-guided local warping with global similarity constraint. Pattern Recognition, 2018, 83:481–497 DOI:10.1016/j.patcog.2018.06.013
59.
Barnes C, Shechtman E, Finkelstein A, Goldman D B. PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 2009, 28(3): 1–11 DOI:10.1145/1531326.1531330
60.
Rav-Acha A, Pritch Y, Lischinski D, Peleg S. Dynamosaics: video mosaics with non-chronological time. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA, 2005, 58–65 DOI:10.1109/CVPR.2005.137
61.
Jiang W, Gu J. Video stitching with spatial-temporal content-preserving warping. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015, 42–48 DOI:10.1109/CVPRW.2015.7301374
62.
Kwatra V, Schödl A, Essa I A, Turk G, Bobick A F. Graphcut textures: image and video synthesis using graph cuts. ACM Transactions on Graphics (ToG), 2003, 22(3): 277–286 DOI:10.1145/1201775.882264
63.
Shum H Y, Szeliski R. Construction and refinement of panoramic mosaics with global and local alignment. In: Proceedings of the IEEE International Conference on Computer Vision. Bombay, India, 1998, 953–956 DOI:10.1109/ICCV.1998.710831
64.
Steedly D, Pal C, Szeliski R. Efficiently registering video into panoramic mosaics. In: Proceedings of the IEEE International Conference on Computer Vision. Beijing, China, 2005, 2: 1300–1307 DOI:10.1109/ICCV.2005.86
65.
He K, Chang H, Sun J. Rectangling panoramic images via warping. ACM Transactions on Graphics (TOG), 2013, 32(4): 1–10 DOI:10.1145/2461912.2462004
66.
Avidan S, Shamir A. Seam carving for content-aware image resizing. ACM Transactions on Graphics (TOG), 2007, 26(3): 10 DOI:10.1145/1276377.1276390
67.
Galil Z. Efficient algorithms for finding maximal matching in graphs. In: Colloquium on Trees in Algebra and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, 90–113
68.
Pan J, Appia V, Villarreal J, Weaver L, Kwon D. Rear-Stitched View Panorama: A Low-Power Embedded Implementation for Smart Rear-View Mirrors on Vehicles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA, 2017, 1184–1193 DOI:10.1109/CVPRW.2017.157
69.
Agarwala A, Agrawala M, Cohen M, Salesin D, Szeliski R. Photographing long scenes with multi-viewpoint panoramas. ACM Transactions on Graphics (TOG), 2006, 25(3): 853–861 DOI:10.1145/1141911.1141966
70.
Brown M, Lowe D G. Unsupervised 3D object recognition and reconstruction in unordered datasets. In: Proceedings of the International Conference on 3-D Digital Imaging and Modeling. Ottawa, Ontario, Canada, 2005, 56–63 DOI:10.1109/3DIM.2005.81
71.
Ho T, Budagavi M. Dual-fisheye lens stitching for 360-degree imaging. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing. New Orleans, USA, 2017, 2172–2176 DOI:10.1109/ICASSP.2017.7952541
72.
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA, 2012, 1097–1105
Related
1. Zhiyuan ZHANG, Yuchao DAI, Jiadai SUN, Deep learning based point cloud registration: an overview Virtual Reality & Intelligent Hardware 2020, 2(3): 222-246
2. Lianyu ZHENG, Xinyu LIU, Zewu AN, Shufei LI, Renjie ZHANG, A smart assistance system for cable assembly by combining wearable augmented reality with portable visual inspection Virtual Reality & Intelligent Hardware 2020, 2(1): 12-27
3. Muhammad IRFAN, Muhammad MUNSIF, Deepdive: a learning-based approach for virtual camera in immersive contents Virtual Reality & Intelligent Hardware 2022, 4(3): 247-262
4. Zike YAN, Hongbin ZHA, Flow-based SLAM: From geometry computation to learning Virtual Reality & Intelligent Hardware 2019, 1(5): 435-460
5. Yuanyuan SHI, Yunan LI, Xiaolong FU, Kaibin MIAO, Qiguang MIAO, Review of dynamic gesture recognition Virtual Reality & Intelligent Hardware 2021, 3(3): 183-206
6. Xiaojiao SONG, Jianjun ZHU, Jingfan FAN, Danni AI, Jian YANG, Topological distance-constrained feature descriptor learning model for vessel matching in coronary angiographies Virtual Reality & Intelligent Hardware 2021, 3(4): 287-301
7. Rafik HAMZA, Minh-Son DAO, Privacy-preserving deep learning techniques for wearable sensor-based big data applications Virtual Reality & Intelligent Hardware 2022, 4(3): 210-222
8. Kangkang YANG, Yu GUO, Pengzhou TANG, Haopeng ZHANG, Han LI, Object registration using an RGB-D camera for complex product augmented assembly guidance Virtual Reality & Intelligent Hardware 2020, 2(6): 501-517
9. Hayat ULLAH, Sitara AFZAL, Imran Ullah KHAN, Perceptual quality assessment of panoramic stitched contents for immersive applications: a prospective survey Virtual Reality & Intelligent Hardware 2022, 4(3): 223-246