Gesture interaction in virtual reality
1. Beijing Key Laboratory of Human-Computer Interaction, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
2. State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190, China
Abstract
Keywords: Virtual reality ; Gesture interaction ; Gesture recognition
Content




Device name | Company | Release time | Distance measured (mm) | Collection method |
---|---|---|---|---|
Leap Motion | Leap | Feb 2013 | 25-600 | Binocular RGB camera |
Fingo | uSens | Aug 2016 | 50-700 | Binocular infrared camera |
Kinect1.0 | Microsoft | Jun 2009 | 80-400 | Based on structured light |
Kinect2.0 | Microsoft | Oct 2014 | 50-450 | Based on time of flight (ToF) |
Author | Year | Type | Input device | Recognition model | Main content |
---|---|---|---|---|---|
Weissmann et al. |
1999 | Static | CyberGlove | BP and radial bias function (RBF) neural networks | Use data gloves to obtain 18 measurements and compare the effects of different neural network models on recognition results |
Xu et al. | 2014 | Static | CyberGlove | Oriented bounding box, angle detection | Four major types of mechanical parts are defined and identified, and corresponding decision algorithms are given according to different conditions |
Mirabella et al. |
2010 | Dynamic | MEM accelerometer | HMM | The user’s data is read by an accelerometer, and then the HMM is used to train and recognize the user-defined gestures to establish a gesture recognition system. |
Xu et al. |
2016 | Dynamic | MEM gyroscope and accelerometer | Decision tree | Pre-trained gestures not needed, no template matching, gesture recognition by combining decision-tree classifier with posture angle |
He et al. |
2008 | Dynamic | MEMS accelerometer | SVM | Compare the effects of three different inputs, use SVM modeling on gesture recognition results |
Henze et al. |
2008 | Dynamic | Wii controller | HMM | Randomly assign gestures, filter the data, reduce the amount of input data by clustering, and train with HMM |
Saponas et al. |
2008 | Dynamic | EMG | SVM | Using 10 sensors to acquire EMG signals, it can distinguish four data sets, which is the position and pressure of different fingers, click and move |
Amma et al. |
2015 | Dynamic | EMG | Naive Bayes | Study the effect of different electrode numbers and positions on the recognition results, obtain high-density EMG signals, and record the difference between two electrodes |
Huang et al. |
2015 | Dynamic | EMG+MEMS accelerometer | KNN | Use dual devices to obtain dual-observation input signals; combine EMG signals with MEMS signals to identify user-defined gestures |
Rubine | 1991 | Dynamic | stylus/touch pad | Linear classifier | The gesture feature set is created by extracting the geometric features and dynamic features of the stroke, and the gesture is identified by statistical recognition. |
Wobbrock et al. |
2007 | Dynamic | stylus/touch pad | Golden Section Search | Re-sample, rotate, and scale the input points to match the specified template for higher gesture recognition results |
Anthony et al. |
2010 | Dynamic | stylus/touch pad | Golden Section Search | An extension of $1 that automatically recognizes multi-stroke gestures without a direction and an order of the track |
Vatavu et al. |
2012 | Dynamic | stylus/touch pad | Hungarian algorithm | An extension of $N that removes the time series information of multiple gestures, turns them into a point cloud collection, and transforms the input gesture-matching problem into a point-to-point matching problem, reducing the spatiotemporal complexity |
Keskin et al. |
2003 | Dynamic | stereo | HMM | Users need to wear colored gloves, use a pair of regular webcams to collect binocular visual gesture data, and identify and track pre-defined gestures through HMM. |
Chai et al. |
2017 | Dynamic | Kinect | 2S-RNN | Using an RGB-D video stream as the collected gesture data, establishing 2S-RNN through SRNN and LSTM for continuous gesture recognition |
Tsironi et al. |
2016 | Dynamic | RGB camera | CNNLSTM | Combined the sensitivity of CNN to visual features, and the context memory of LSTM, for dynamic gesture recognition |
Sim | 2012 | Dynamic | touchscreen/ icrophone | Statistical based multimodal fusion model | The n-gram is used to build the language model, and the acoustic model and gesture model are established by HMM. Then, the multimodal fusion model is obtained by statistical analysis, and the two modalities of voice and gesture are used for text editing. |
Stefan Kopp |
2004 | Dynamic | RGB camera/ microphone |
Syntax analysis, Semantic Analysis |
Uses SPUD to syntactically analyze the text obtained by speech translation, then converts the specific gesture into the form of syntactic representation, integrates it into the original syntax tree, constructs a topology for ideology, and applys it to address the automatic response system. |








Reference
Pantic M, Nijholt A, Pentland A, Huang T S. Human-Centred Intelligent Human Computer Interaction (HCI²): how far are we from attaining it? International Journal of Autonomous and Adaptive Communications Systems,2008, 1(2): 168−187 DOI:10.1504/IJAACS.2008.019799
Karam M. A framework for research and design of gesture-based human-computer interactions. Doctoral. University of Southampton, 2006
Dam A V. Post-WIMP user interfaces. Communications of the ACM, 1997, 40(2): 63−67 DOI:10.1145/253671.253708
Green M, Jacob R. Software architectures and metaphors for non-wimp user interfaces. ACM SIGGRAPH Computer Graphics, 1991, 25(3): 229−235 DOI:10.1145/126640.126677
Mitra S, Acharya T. Gesture Recognition: A Survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(3): 311−324 DOI:10.1109/TSMCC.2007.893280
Cerney M M, Vance J M. Gesture recognition in virtual environments: a review and framework for future development. Iowa State University Human Computer Interaction Technical Report ISU-HCI-2005-01. 2005
Parvini F, Shahabi C. An algorithmic approach for static and dynamic gesture recognition utilising mechanical and biomechanical characteristics. International Journal of Bioinformatics Research and Applications, 2007, 3(1): 4−23 DOI:10.1504/ijbra.2007.011832
Rogers Y, Sharp H, Preece J. Interaction design: beyond human-computer interaction. John Wiley Sons, 2011
Rautaray S S, Agrawal A. Vision based hand gesture recognition for human computer interaction: a survey. Artificial Intelligence Review, 2015, 43(1): 1−54 DOI:10.1007/s10462-012-9356-9
Pavlovic V, Sharma R, Huang T S. Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Transactions on Pattern Analysis Machine Intelligence, 1997, 19(7): 677−695 DOI:10.1109/34.598226
Ottenheimer H J. The anthropology of language: an introduction to linguistic anthropology. Wadsworth Publishing. 2005
McNeill D. Hand and mind: What gestures reveal about thought. Chicago, USA: University of Chicago Press. 1992
Kanniche M B. Gesture recognition from video sequences. PhD Thesis, University of Nice. 2009
International standards: ISO/IEC 30113-11: 2017(E)
Nishikawa A, Hosoi T, Koara K, Negoro D, Hikita A, Asano S, Kakutani H, Miyazaki F, Sekimoto M, Yasui M, Miyake Y, Takiguchi S, Monden M. FAce MOUSe: A novel human-machine interface for controlling the position of a laparoscope. IEEE Transactions on Robotics and Automation, 2003, 19(5): 825−841 DOI:10.1109/TRA.2003.817093
Tarchanidis K N, Lygouras J N. Data glove with a force sensor. IEEE Transactions on Instrumentation and Measurement, 2003, 52(3): 984−989 DOI:10.1109/TIM.2003.809484
Temoche P, Esmitt R J, Rodríguez O. A low-cost data glove for virtual reality. Xi International Congress of Numerical Methods in Engineering and Applied Sciences. 2012, TCG31−36
Furness T A. The Super Cockpit and its Human Factors Challenges. Proceedings of the Human Factors Society Annual Meeting, 1986, 30(1): 48−52 DOI:10.1177/154193128603000112
Rekimoto J. GestureWrist and GesturePad: unobtrusive wearable interaction devices. In: Proceedings Fifth International Symposium on Wearable Computers, 2001, 21−27 DOI:10.1109/ISWC.2001.962092
Baek J, Jang I J, Park K, Kang H S, Yun B J. Human Computer Interaction for the Accelerometer-Based Mobile Game. In: Embedded and Ubiquitous Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, 509−518 DOI:10.1007/11802167_52
Webster J G. Medical Instrumentation-Application and Design. 1978, 3(3): 306
Jain A, Bhargava D B, Rajput A. Touch-screen technology. International Journal of Advanced Research in Computer Science and Electronics Engineering, 2013, 2(1)
Subrahmonia J, Zimmerman T. Pen computing: challenges and applications. In: Proceedings 15th International Conference on Pattern Recognition ICPR-2000. Barcelona, Spain, 2000, 60−66 DOI:10.1109/ICPR.2000.906018
Freeman W T Roth M. Orientation histograms for hand gesture recognition. In: International workshop on automatic face and gesture recognition. 1995, 12: 296−301
Zhang L G, Wu J Q, Gao W, Yao H X. Hand gesture recognition based on Hausdorff Distance. Journal of Image and Graphics, 2002, 7(11): 1144−1150 DOI:10.11834/jig.2002011341
Meng C N, Lv J P, Chen X H. Gesture recognition based on universal infrared camera. Computer Engineering and Applications. 2015, 51(16): 17−22
Weichert F, Bachmann D, Rudak B, Fisseler D. Analysis of the Accuracy and Robustness of the Leap Motion Controller. Sensors, 2013, 13(5): 6380−6393 DOI:10.3390/s130506380
Chen Y, Ding Z, Chen Y, Wu X. Rapid recognition of dynamic hand gestures using leap motion. In: 2015 IEEE International Conference on Information and Automation. 2015, 1419−1424 DOI:10.1109/ICInfA.2015.7279509
Anonymous. USens CTO Detailed Human-Computer Interactive Tracking Technology. Computer Telecommunica-tion, 2016(4): 12−13
Anonymous. Virtual Reality Technology Trends to “Bare Hand Manipulation”. Machine Tool Hydraulics, 2017(8): 38−38
Gu Y, Do H, Ou Y, Sheng W. Human gesture recognition through a Kinect sensor. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2012, 1379–1384 DOI:10.1109/ROBIO.2012.6491161
Ren Z, Yuan J, Meng J, Zhang Z. Robust Part-Based Hand Gesture Recognition Using Kinect Sensor. IEEE Transactions on Multimedia. 2013, 15(5): 1110–1120 DOI:10.1109/TMM.2013.2246148
Raheja J L, Chaudhary A, Singal K. Tracking of Fingertips and Centers of Palm Using KINECT. In: 2011 Third International Conference on Computational Intelligence, Modelling Simulation, 2011, 248−252 DOI:10.1109/CIMSim.2011.51
Ren Z, Meng J, Yuan J, Zhang Z: Robust hand gesture recognition with kinect sensor. In: Proceedings of the 19th ACM international conference on Multimedia. Scottsdale, Arizona, USA, ACM, 2011: 759−760 DOI:10.1145/2072298.2072443
Han Y. A low-cost visual motion data glove as an input device to interpret human hand gestures. IEEE Transactions on Consumer Electronics. 2010, 56(2): 501−509 DOI:10.1109/TCE.2010.5505962
Mistry P, Maes P, Chang L. WUW - wear Ur world: a wearable gestural interface. In: CHI '09 Extended Abstracts on Human Factors in Computing Systems. Boston. MA, USA, ACM, 2009: 4111−4116 DOI:10.1145/1520340.1520626
Rautaray S S, Agrawal A. Vision based hand gesture recognition for human computer interaction: a survey. Artificial Intelligence Review, 2015, 43(1): 1−54 DOI:10.1007/s10462-012-9356-9
Mehdi S A, Khan Y N. Sign language recognition using sensor gloves. In: Proceedings of the 9th International Conference on Neural Information Processing. 2002, 2204−2206 DOI:10.1109/ICONIP.2002.1201884
Shi J F, Chen Y, Zhao H M. Node-Pair BP Network Based Gesture Recognition by Data Glove. System Simulation Technology, 2008, 4(3): 154−157 DOI:10.3969/j.issn.1673-1964.2008.03.003
Rung-Huei L, Ming O. A real-time continuous gesture recognition system for sign language. In: Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition. 1998, 558−567 DOI:10.1109/AFGR.1998.671007
Liu M T, Lei Y. Chinese finger Alphabet flow recognition system based on data glove. Computer Engineering, 2011, 37(22): 168−170
Wu J Q, Gao W, Chen L X. A system recognizing Chinese finger-spelling alphabets based on data-glove input. Pattern Recognition and Artificial Intelligence, 1999(1): 74−78
Weissmann J, Salomon R. Gesture recognition for virtual reality applications using data gloves and neural networks. In: IJCNN'99 International Joint Conference on Neural Networks Proceedings. 1999, 2043−2046 DOI:10.1109/IJCNN.1999.832699
Xu Y H, Li J R. Research and implementation of virtual hand interaction in virtual mechanical assembly. Machinery Design Manufacture, 2014(5): 262−266
Mirabella O, Brischetto M, Mastroeni G. MEMS based gesture recognition. In: 3rd International Conference on Human System Interaction. 2010, 599−604 DOI:10.1109/HSI.2010.5514506
Kela J, Korpipää P, Mäntyjärvi J, Kallio S, Savino G, Jozzo L, Marca D. Accelerometer-based gesture control for a design environment. Personal Ubiquitous Computing, 2006, 10(5): 285−299 DOI:10.1007/s00779-005-0033-8
Xu J, Liu C H, Meng Y X. Gesture recognition base on wearable controller. Application of Electronic Technique, 2016, 42(7): 68−71
He Z Y, Jin L W, Zhen L X, Huang J C. Gesture recognition based on 3D accelerometer for cell phones interaction. In: APCCAS2008 - 2008IEEE Asia Pacific Conference on Circuits and Systems. 2008, 217−220 DOI:10.1109/APCCAS.2008.4745999
Schlömer T, Poppinga B, Henze N, Boll S. Gesture recognition with a Wii controller. In: Proceedings of the 2nd international conference on Tangible and embedded interaction. Bonn, Germany, ACM, 2008: 11−14 DOI:10.1145/1347390.1347395
Du Y, Jin W, Wei W, Hu Y, Geng W. Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation. 2017, 17(3): 458 DOI:10.3390/s17030458
Kim J, Mastnik S, André E. EMG-based hand gesture recognition for realtime biosignal interfacing. In: Proceedings of the 13th international conference on Intelligent user interfaces. Gran Canaria, Spain, ACM, 2008: 30−39 DOI:10.1145/1378773.1378778
Madhavan G. Electromyography: physiology, engineering and non-invasive applications. Annals of Biomedical Engineering, 2005, 33(11): 1671
Saponas T S, Tan D S, Morris D, Balakrishnan R. Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Florence, Italy, ACM, 2008: 515−524 DOI:10.1145/1357054.1357138
Saponas T S, Tan D S, Morris D, Balakrishnan R, Turner J, Landay J A. Enabling always-available input with muscle-computer interfaces. In: Proceedings of the 22nd annual ACM symposium on User interface software and technology. Victoria, BC, Canada, ACM, 2009: 167−176 DOI:10.1145/1622176.1622208
Saponas T S, Tan D S, Morris D, Turner J, Landay J A. Making muscle-computer interfaces more practical. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Atlanta, Georgia, USA, ACM, 2010: 851−854 DOI:10.1145/1753326.1753451
Amma C, Krings T, Böer J, Schultz T. Advancing Muscle-Computer Interfaces with High-Density Electromyography. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. Seoul, Republic of Korea, ACM, 2015: 929−938 DOI:10.1145/2702123.2702501
Huang D, Zhang X, Saponas T S, Fogarty J, Gollakota S. Leveraging Dual-Observable Input for Fine-Grained Thumb Interaction Using Forearm EMG. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software Technology. Charlotte, NC, USA, ACM, 2015: 523−528 DOI:10.1145/2807442.2807506
Rubine D H. The automatic recognition of gestures. Carnegie Mellon University, 1992
Wobbrock J O, Wilson A D, Li Y. Gestures without libraries, toolkits or training: a $1 recognizer for user interface prototypes. In: Proceedings of the 20th annual ACM symposium on User interface software and technology. Newport, Rhode Island, USA, ACM, 2007: 159−168 DOI:10.1145/1294211.1294238
Anthony L, Wobbrock J O. A lightweight multistroke recognizer for user interface prototypes. In: Proceedings of Graphics Interface 2010. Ottawa, Ontario, Canada, Canadian Information Processing Society, 2010: 245−252
VatavuR-D, Anthony L, Wobbrock J O. Gestures as point clouds: a $P recognizer for user interface prototypes. In: Proceedings of the 14th ACM international conference on Multimodal interaction. Santa Monica, California, USA, ACM, 2012: 273−280 DOI:10.1145/2388676.2388732
Hackenberg G, McCall R, Broll W. Lightweight palm and finger tracking for real-time 3D gesture control. In: 2011 IEEE Virtual Reality Conference. 2011, 19−26 DOI:10.1109/VR.2011.5759431
Freeman W T, Weissman C D. Television control by hand gestures. International Workshop on Automatic Face Gesture Recognition, 1995: 179−183
Kaufmann B, Louchet J, Lutton E. Hand Posture Recognition Using Real-Time Artificial Evolution. In: Applications of Evolutionary Computation. Berlin, Heidelberg, Springer Berlin Heidelberg, 2010, 251−260 DOI:10.1007/978-3-642-12239-2_26
Flasiński M, Myśliński S. On the use of graph parsing for recognition of isolated hand postures of Polish Sign Language. Pattern Recognition, 2010, 43(6): 2249−2264 DOI:10.1016/j.patcog.2010.01.004
Bergh M V d, Gool L V. Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: Proceedings of the 2011 IEEE Workshop on Applications of Computer Vision (WACV). IEEE Computer Society, 2011: 66−72 DOI:10.1109/WACV.2011.5711485
Jones M J, Rehg J M. Statistical Color Models with Application to Skin Detection. International Journal of Computer Vision, 2002, 46(1): 81−96 DOI:10.1023/A:1013200319198
Weng C, Li Y, Zhang M, Guo K, Tang X, Pan Z. Robust Hand Posture Recognition Integrating Multi-cue Hand Tracking. In: Entertainment for Education Digital Techniques and Systems. Berlin, Heidelberg, Springer Berlin Heidelberg, 2010, 497−508 DOI:10.1007/978-3-642-14533-9_51
Ju S X, Black M J, Yacoob Y. Cardboard People: A Parameterized Model of Articulated Image Motion. In: Proceedings of the 2nd International Conference on Automatic Face and Gesture Recognition. IEEE Computer Society; 1996: 38
Kervrann C, Heitz F. Learning structure and deformation modes of nonrigid objects in long image sequences. 1995
Ren H B, Xu G H, Lin X Y. Hand gesture recognition based on characteristic curves. Journal of Software, 2002, 13(5): 987−993
Priyal P S, Bora P K. A robust static hand gesture recognition system using geometry based normalizations and Krawtchouk moments. Pattern Recognition, 2013, 46(8): 2202−2219 DOI:10.1016/j.patcog.2013.01.033
Ju S X, Black M J, Minneman S, Kimber D. Analysis of Gesture and Action in Technical Talks for Video Indexing. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 1997: 595
Luo Q, Kong X, Zeng G, Fan J. Human action detection via boosted local motion histograms. Machine Vision and Applications, 2010, 21(3): 377−389 DOI:10.1007/s00138-008-0168-5
Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A. Real-time human pose recognition in parts from single depth images. In: CVPR 2011, 2011, 1297−1304 DOI:10.1109/CVPR.2011.5995316
Kass M, Witkin A, TerzopoulosD. Snakes. Active contour models. International Journal of Computer Vision, 1988, 1(4): 321−331 DOI:10.1007/BF00133570
Lu W-L, Little J J. Simultaneous Tracking and Action Recognition using the PCA-HOG Descriptor. In: Proceedings of the The 3rd Canadian Conference on Computer and Robot Vision. IEEE Computer Society, 2006: 6 DOI:10.1109/CRV.2006.66
Moni M A, Ali A B M S. HMM based hand gesture recognition. A review on techniques and approaches. In: 2009 2nd IEEE International Conference on Computer Science and Information Technology. 2009, 433−437 DOI:10.1109/ICCSIT.2009.5234536
Keskin C, Erkan A, Akarun L. Real time hand tracking and 3D gesture recognition for interactive interfaces using HMM. In: Proceedings of International Conference on Artificial Neural Networks. 2003
Chai X, Liu Z, Yin F, Liu Z, Chen X. Two streams Recurrent Neural Networks for Large-Scale Continuous Gesture Recognition. In: 2016 23rd International Conference on Pattern Recognition, 2016, 31−36 DOI:10.1109/ICPR.2016.7899603
Tsironi E, Barros P, Wermter S. Gesture recognition with a convolutional long short-term memory recurrent neural network. In: Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). Bruges, Belgium, 2016, 213−218
Bolt R A. “Put-that-there”: Voice and gesture at the graphics interface. Acm Siggraph Computer Graphics, 1980, 14(3): 262−270
Cohen P R, Johnston M, McGee D, Oviatt S, Pittman J, Smith I, Chen L, Clow J. QuickSet: multimodal interaction for distributed applications. In: Proceedings of the fifth ACM international conference on Multimedia. Seattle, Washington, USA, ACM, 1997: 31−40
Chatterjee I, Xiao R, Harrison C. Gaze+Gesture: Expressive, Precise and Targeted Free-Space Interactions. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. Seattle, Washington, USA, ACM, 2015: 131−138 DOI:10.1145/2818346.2820752
Velloso E, Turner J, Alexander J, Bulling A, Gellersen H. An Empirical Investigation of Gaze Selection in Mid-Air Gestural 3D Manipulation. In: Human-Computer Interaction – INTERACT 2015. Cham: Springer International Publishing, 2015, 315−330 DOI:10.1007/978-3-319-22668-2_25
Zhang F J, Dai G Z, Peng X L. A survey on human-computer interaction in virtual reality. Scientia Sinica (Informationis), 2016(12): 1711−1736 DOI:10.1360/N112016-00252
Wu L. Oviatt S L. Cohen P R. Multimodal integration-a statistical view. IEEE Transactions on Multimedia, 1999, 1(4): 334−341 DOI:10.1109/6046.807953
Sim K C. Speak-as-you-swipe (SAYS): a multimodal interface combining speech and gesture keyboard synchronously for continuous mobile text entry. In: Proceedings of the 14th ACM international conference on Multimodal interaction. Santa Monica, California, USA, ACM, 2012: 555−560 DOI:10.1145/2388676.2388793
Kopp S, Tepper P, Cassell J. Towards integrated microplanning of language and iconic gesture for multimodal output. In: Proceedings of the 6th International Conference on Multimodal Interfaces. New York, NY, ACM Press, 2004: 97−104
Ruppert G C S, Reis L O, Amorim P H J, de Moraes T F, da Silva J V L. Touchless gesture user interface for interactive image visualization in urological surgery. World Journal of Urology, 2012, 30(5): 687−691 DOI:10.1007/s00345-012-0879-0
Wachs J P, Stern H I, Edan Y, Gillam M. , Handler J. , Feied C. , Smith M. A gesture-based tool for sterile browsing of radiology images. J Am Med Inform Assoc, 2008, 15(3): 321−323 DOI:10.1197/jamia.M2410
Keskin C, Balci K, Aran O, Sankur B, Akarun L. A Multimodal 3D Healthcare Communication System. In: 2007 3DTV Conference, 2007, 1−4 DOI:10.1109/3DTV.2007.4379488
Phelan I, Arden M, Garcia C, Roast C. Exploring virtual reality and prosthetic training. In: 2015 IEEE Virtual Reality (VR), 2015, 353−354 DOI:10.1109/VR.2015.7223441
Moustakas K, Nikolakis G, Tzovaras D, Strintzis M G. A geometry education haptic VR application based on a new virtual hand representation. In: IEEE Proceedings VR 2005 Virtual Reality, 2005, 249−252 DOI:10.1109/VR.2005.1492782
Vrellis I, Moutsioulis A, Mikropoulos T A. Primary School Students’ Attitude towards Gesture Based Interaction: A Comparison between Microsoft Kinect and Mouse. In: 2014 IEEE 14th International Conference on Advanced Learning Technologies, 2014, 678−682 DOI:10.1109/ICALT.2014.199
Zhang X, Chen X, Li Y, Lantz V, Wang K, Yang J. A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors. IEEE Transactions on Systems, Man, and Cybernetics―Part A: Systems and Humans, 2011, 41(6): 1064−1076 DOI:10.1109/TSMCA.2011.2116004
Zhang F, Chu S, Pan R, Ji N, Xi L. Double hand-gesture interaction for walk-through in VR environment. In: 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). Wuhan, IEEE, 2017, 539−544 DOI:10.1109/JCSSE.2015.7219818
Khundam C. First person movement control with palm normal and hand gesture interaction in virtual reality. In: 2015 12th International Joint Conference on Computer Science and Software Engineering (JCSSE). Songkhla, IEEE, 2015, 325−330 DOI:10.1109/JCSSE.2015.7219818
Park H, Jeong S, Kim T, Youn D and Kim K. Visual representation of gesture interaction feedback in virtual reality games. In: International Symposium on Ubiquitous Virtual Reality. Nara, IEEE, 2017, 20−23 DOI:10.1109/ISUVR.2017.14
Latoschik M E: A gesture processing framework for multimodal interaction in virtual reality. In: Proceedings of the 1st international conference on Computer graphics, virtual reality and visualisation. Cape Town, ACM, 2001: 95−100 DOI:10.1145/513867.513888
Chun L M, Arshad H, Piumsomboon T, Billinghurst M. A combination of static and stroke gesture with speech for multimodal interaction in a virtual environment. In: 2015 International Conference on Electrical Engineering and Informatics (ICEEI). Denpasar, IEEE, 2015: 59−64 DOI:10.1109/ICEEI.2015.7352470