Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2022, 4(3): 189-209

Published Date:2022-6-20 DOI: 10.1016/j.vrih.2022.02.001

Serious games in science education: a systematic literature review

Abstract

Teaching science through computer games, simulations, and artificial intelligence (AI) is an increasingly active research field. To this end, we conducted a systematic literature review on serious games for science education to reveal research trends and patterns. We discussed the role of Virtual Reality (VR), AI, and Augmented Reality (AR) games in teaching science subjects like physics. Specifically, we covered the research spanning between 2011 and 2021, investigated country-wise concentration and most common evaluation methods, and discussed the positive and negative aspects of serious games in science education in particular and attitudes towards the use of serious games in education in general.

Keyword

Serious games ; Simulations, Artificial intelligence, Virtual reality, Augmented reality ; Games in education

Cite this article

Mohib ULLAH, Sareer Ul AMIN, Muhammad MUNSIF, Muhammad Mudassar YAMIN, Utkurbek SAFAEV, Habib KHAN, Salman KHAN, Habib ULLAH. Serious games in science education: a systematic literature review. Virtual Reality & Intelligent Hardware, 2022, 4(3): 189-209 DOI:10.1016/j.vrih.2022.02.001

References

1. Gough C, Video gaming industry. https://www.statista.com/topics/868/video-games/

2. Wouters P, van Nimwegen C, van Oostendorp H, van der Spek E D. A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 2013, 105(2): 249–265 DOI:10.1037/a0031311

3. Djaouti D, Alvarez J, Jessel J P. Classifying serious games: the G/P/S model. Handbook of Research on Improving Learning and Motivation Through Educational Games: Multidisciplinary Approaches, 2011(2005): 118–136

4. Khan N, Muhammad K, Hussain T, Nasir M, Munsif M, Imran A S, Sajjad M. An adaptive game-based learning strategy for children road safety education and practice in virtual space. Sensors, 2021, 21(11): 3661 DOI:10.3390/s21113661

5. Avery P, Togelius J, Alistar E, van Leeuwen R P. Computational intelligence and tower defence games. In: 2011 IEEE Congress of Evolutionary Computation (CEC). New Orleans, LA, USA, IEEE, 2011, 1084–1091 DOI:10.1109/cec.2011.5949738

6. Brauner P, Ziefle M. Serious motion-based exercise games for older adults: evaluation of usability, performance, and pain mitigation. JMIR Serious Games, 2020, 8(2): e14182 DOI:10.2196/14182

7. Gampell A, Gaillard J, Parsons M, le De L. Fostering student participation in disaster risk reduction through disaster video games. Australian Journal of Emergency Management, 2020, 35(2): 43–50

8. Ullah H, Altamimi A B, Uzair M, Ullah M. Anomalous entities detection and localization in pedestrian flows. Neurocomputing, 2018, 290: 74–86 DOI:10.1016/j.neucom.2018.02.045

9. Sabirli Z E, Coklar A N. The effect of educational digital games on education, motivation and attitudes of elementary school students against course access. World Journal on Educational Technology: Current Issues, 2020, 12(3): 165–178 DOI:10.18844/wjet.v12i3.4993

10. Ullah M, Mudassar Yamin M, Mohammed A, Daud Khan S, Ullah H, Alaya Cheikh F. Attention-based lstm network for action recognition in sports. Electronic Imaging, 2021, 2021(6): 302 DOI:10.2352/issn.2470-1173.2021.6.iriacv-302

11. Afthinos I, Manasis V, Chrysanthopoulos T P. Serious game top eleven as an educational tool in sports economics. International Journal of Serious Games, 2021, 8(2): 3–19 DOI:10.17083/ijsg.v8i2.420

12. ZINI E. Clustering and reproduction of players' exploration paths in video games. 2020

13. Angelini C, Williams A S, Kress M, Vieira E R, D'Souza N, Rishe N D, Medina J, Ortega F R. City planning with augmented reality. 2020

14. Sousa M. Modern Serious Board Games: modding games to teach and train civil engineering students. In: 2020 IEEE Global Engineering Education Conference (EDUCON). Porto, Portugal, IEEE, 2020, 197–201 DOI:10.1109/educon45650.2020.9125261

15. Albek J. Serious games. https://cs.gmu.edu/gaia/SeriousGames/index.html, 2019

16. Ullah M, Alaya Cheikh F. Deep feature based end-to-end transportation network for multi-target tracking. In: 2018 25th IEEE International Conference on Image Processing (ICIP). Athens, IEEE, 2018: 3738–3742 DOI:10.1109/icip.2018.8451472

17. Ullah M, Cheikh F A. A directed sparse graphical model for multi-target tracking. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT, IEEE, 2018, 1816–1823 DOI:10.1109/cvprw.2018.00235

18. Ullah M, Ullah H, Cheikh F A. Single shot appearance model (ssam) for multi-target tracking. Electronic Imaging, 2019, 2019(7): 466 DOI:10.2352/issn.2470-1173.2019.7.iriacv-466

19. Liu S, Liu D Y, Muhammad K, Ding W P. Effective template update mechanism in visual tracking with background clutter. Neurocomputing, 2021, 458: 615–625 DOI:10.1016/j.neucom.2019.12.143

20. Dick M, Wellnitz O, Wolf L. Analysis of factors affecting players' performance and perception in multiplayer games. NetGames '05: Proceedings of 4th ACM SIGCOMM workshop on Network and system support for games. 2005, 1–7 DOI:10.1145/1103599.1103624

21. Ullah H, Khan S D, Ullah M, Cheikh F A. Social Modeling Meets Virtual Reality: An Immersive Implication. Cham, Springer International Publishing, 2021, 131–140 DOI:10.1007/978-3-030-68799-1_10

22. Khan S D, Ullah H, Uzair M, Ullah M, Ullah R, Cheikh F A. Disam: density independent and scale aware model for crowd counting and localization. In: 2019 IEEE International Conference on Image Processing (ICIP). Taipei, Taiwan, China, IEEE, 2019, 4474–4478 DOI:10.1109/icip.2019.8803409

23. Muhammad K, Ahmad J, Mehmood I, Rho S, Baik S W. Convolutional neural networks based fire detection in surveillance videos. IEEE Access, 2018, 6: 18174–18183 DOI:10.1109/access.2018.2812835

24. Ullah M, Ahmed Kedir M, Alaya Cheikh F. Hand-crafted vs deep features: a quantitative study of pedestrian appearance model. In: 2018 Colour and Visual Computing Symposium (CVCS). Gjøvik, IEEE, 2018, 1–6 DOI:10.1109/cvcs.2018.8496556

25. Szymanezyk O, Dickinson P, Duckett T. Towards Agent-Based Crowd Simulation in Airports Using Games Technology. Heidelberg, Springer Berlin Heidelberg, 2011, 524–533 DOI:10.1007/978-3-642-22000-5_54

26. Ullah H, Uzair M, Ullah M, Khan A, Ahmad A, Khan W. Density independent hydrodynamics model for crowd coherency detection. Neurocomputing, 2017, 242: 28–39 DOI:10.1016/j.neucom.2017.02.023

27. Khan S, Muhammad K, Hussain T, Ser J D, Cuzzolin F, Bhattacharyya S, Akhtar Z, de Albuquerque V H C. DeepSmoke: Deep learning model for smoke detection and segmentation in outdoor environments. Expert Systems With Applications, 2021, 182: 115125 DOI:10.1016/j.eswa.2021.115125

28. Ullah M, Ullah H, Khan S D, Cheikh F A. Stacked lstm network for human activity recognition using smartphone data. In: 2019 8th European Workshop on Visual Information Processing (EUVIP). Roma, Italy, IEEE, 2019, 175–180 DOI:10.1109/euvip47703.2019.8946180

29. de Almeida Rocha D, Cesar Duarte J. Simulating human behaviour in games using machine learning. In: 2019 18th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames). Rio de Janeiro, Brazil, IEEE, 2019, 163–172 DOI:10.1109/sbgames.2019.00030

30. Ribeiro J, Almeida J E, Rossetti R J, Coelho A, Coelho A L. Using serious games to train evacuation behaviour. In: 7th Iberian Conference on Information Systems and Technologies (CISTI 2012). 2012, IEEE, 1–6

31. UllahH, ConciN. Crowd motion segmentation and anomaly detection via multi-label optimization. In: ICPR workshop on pattern recognition and crowd analysis. 2012

32. Brandt E. Participation through exploratory design games. In: Facilitating Change:-Using interactive methods in organisations, communities and networks. Polyteknisk Boghandel og Forlag; 2011, 213–256

33. Ullah H, Khan S D, Ullah M, Cheikh F A, Uzair M. Two stream model for crowd video classification. In: 2019 8th European Workshop on Visual Information Processing (EUVIP). Roma, Italy, IEEE, 2019, 93–98 DOI:10.1109/euvip47703.2019.8946170

34. Hohl W, Kharvari F, Klinker G. Wayfinding in museums: a cross-sectional comparison between 3D serious games and 2D drawings as tools for participatory design. In: 2020 IEEE Conference on Games (CoG). Osaka, Japan, IEEE, 2020, 592–595 DOI:10.1109/cog47356.2020.9231921

35. Muhammad K, Ahmad J, Baik S W. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing, 2018, 288: 30–42 DOI:10.1016/j.neucom.2017.04.083

36. Yang L, Zhang L F, Philippopoulos-Mihalopoulos A, Chappin E J L, van Dam K H. Integrating agent-based modeling, serious gaming, and co-design for planning transport infrastructure and public spaces. URBAN DESIGN International, 2021, 26(1): 67–81 DOI:10.1057/s41289-020-00117-7

37. Ullah M, Ullah H, Conci N, de Natale F G B. Crowd behavior identification. In: 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, AZ, USA, IEEE, 2016, 1195–1199 DOI:10.1109/icip.2016.7532547

38. Lotfipour S, Lopez V. Exploring the california gold rush: An interactive educational multimedia game. California State Polytechnic University, Pomona; 2020

39. Ullah H, Islam I U, Ullah M, Afaq M, Khan S D, Iqbal J. Multi-feature-based crowd video modeling for visual event detection. Multimedia Systems, 2021, 27(4): 589–597 DOI:10.1007/s00530-020-00652-x

40. Cheng M T, Chen J H, Chu S J, Chen S Y. The use of serious games in science education: a review of selected empirical research from 2002 to 2013. Journal of Computers in Education, 2015, 2(3): 353–375 DOI:10.1007/s40692-015-0039-9

41. Essential facts about the computer and video game industry https://www.theesa.com/facts/pdfs,” ESA EF 2013. pdf, 2013

42. Nakamura Y. Peak video game? top analyst sees industry slumping in 2019. 2019

43. Ellington H, Addinall E, Percival F. Games and simulations in science education. 1981

44. Egenfeldt-Nielsen S. Beyond Edutainment: Exploring the Educational Potential of Computer Games. IT University Copenhagen, Copenhagen, 2005

45. Magnussen R. Games as a Platform for Situated Science Practice. 2007, 21:301

46. Papastergiou M. Digital Game-Based Learning in high school Computer Science education: impact on educational effectiveness and student motivation. Computers Education, 2009, 52(1): 1–12 DOI:10.1016/j.compedu.2008.06.004

47. Miller L M, Chang C I, Wang S, Beier M E, Klisch Y. Learning and motivational impacts of a multimedia science game. Computers Education, 2011, 57(1): 1425–1433 DOI:10.1016/j.compedu.2011.01.016

48. Sánchez J, Olivares R. Problem solving and collaboration using mobile serious games. Computers Education, 2011, 57(3): 1943–1952 DOI:10.1016/j.compedu.2011.04.012

49. Graeske C, Sjöberg S A. VR-technology in teaching: opportunities and challenges. International Education Studies, 2021, 14(8): 76 DOI:10.5539/ies.v14n8p76

50. Magnussen R. Games in science education: Discussion of the potential and pitfalls of games-based science education. In: European Conference on Games Based Learning. Academic Conferences International Limited, 2014, 339

51. Yu H. What Pokémon Go’s Success Means for the Future of Augmented Reality. 2016, 23:16

52. Li J, van der Spek E D, Feijs L, Wang F, Hu J. Augmented Reality Games for Learning: A Literature Review. Cham, Springer International Publishing, 2017, 612–626

53. Moro C, Phelps C, Redmond P, Stromberga Z. HoloLens and mobile augmented reality in medical and health science education: a randomised controlled trial. British Journal of Educational Technology, 2021, 52(2): 680–694 DOI:10.1111/bjet.13049

54. Ferrer V, Perdomo A, Rashed-Ali H, Fies C, Quarles J. How does usability impact motivation in augmented reality serious games for education? In: 2013 5th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES). Poole, IEEE, 2013, 1–8 DOI:10.1109/vs-games.2013.6624233

55. Baek S, Park J Y, Han J. Simulation-based serious games for science education in elementary and middle schools. Games and Learning Alliance, 2016 DOI:10.1007/978-3-319-40216-1_19

56. Noroozi O, Dehghanzadeh H, Talaee E. A systematic review on the impacts of game-based learning on argumentation skills. Entertainment Computing, 2020, 35: 100369 DOI:10.1016/j.entcom.2020.100369

57. Manzano-León A, Camacho-Lazarraga P, Guerrero M A, Guerrero-Puerta L, Aguilar-Parra J M, Trigueros R, Alias A. Between level up and game over: a systematic literature review of gamification in education. Sustainability, 2021, 13(4): 2247 DOI:10.3390/su13042247

58. Cheng K H, Tsai C C. Affordances of augmented reality in science learning: suggestions for future research. Journal of Science Education and Technology, 2013, 22(4): 449–462 DOI:10.1007/s10956-012-9405-9

59. Hafsa S, Majid M A, Tawafak R M. Learnability factors of AR usage performance: Validating through survey. In: 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). Pekan, Malaysia, IEEE, 2021 DOI:10.1109/icsecs52883.2021.00074

60. Kamińska D, Sapiński T, Wiak S, Tikk T, Haamer R, Avots E, Helmi A, Ozcinar C, Anbarjafari G. Virtual reality and its applications in education: survey. Information, 2019, 10(10): 318 DOI:10.3390/info10100318

61. Lamb R, Etopio E A. Virtual reality: a tool for preservice science teachers to put theory into practice. Journal of Science Education and Technology, 2020, 29(4): 573–585 DOI:10.1007/s10956-020-09837-5

62. Agbo F J, Sanusi I T, Oyelere S S, Suhonen J. Application of virtual reality in computer science education: a systemic review based on bibliometric and content analysis methods. Education Sciences, 2021, 11(3): 142 DOI:10.3390/educsci11030142

63. Tilhou R, Taylor V, Crompton H. 3D Virtual Reality in K-12 Education: A Thematic Systematic ReviewEmerging Technologies and Pedagogies in the Curriculum, 2020: 169–184 DOI:10.1007/978-981-15-0618-5_10

64. Kalogiannakis M, Papadakis S, Zourmpakis A I. Gamification in science education. A systematic review of the literature. Education Sciences, 2021, 11(1): 22 DOI:10.3390/educsci11010022

65. Gee J P. What video games have to teach us about learning and literacy. Computers in Entertainment, 2003, 1(1): 20 DOI:10.1145/950566.950595

66. Paraskeva F, Mysirlaki S, Papagianni A. Multiplayer online games as educational tools: facing new challenges in learning. Computers Education, 2010, 54(2): 498–505 DOI:10.1016/j.compedu.2009.09.001

67. Prensky M. Fun, play and games: What makes games engaging. 2001, 5(1):5–31

68. Annetta L, Mangrum J, Holmes S, Collazo K, Cheng M T. Bridging Realty to Virtual Reality: investigating gender effect and student engagement on learning through video game play in an elementary school classroom. International Journal of Science Education, 2009, 31(8): 1091–1113 DOI:10.1080/09500690801968656

69. Franca Sangiorgio S G, Montinaro S, Learning science through serious gaming. http://www.envriplus.eu/wp-content/uploads/2016/05/ENVRI-Serious-gaming.pdf, 2016

70. Plats grow. https://www.sciencekids.co.nz/gamesactivities/plantsgrow.html, 2019

71. Melting points. https://www.sciencekids.co.nz/gamesactivities/meltingpoints.html, 2019

72. Cheng M T, Annetta L. Students’ learning outcomes and learning experiences through playing a Serious Educational Game. Journal of Biological Education, 2012, 46(4): 203–213 DOI:10.1080/00219266.2012.688848

73. Holly M, Pirker J, Resch S, Brettschuh S, Gütl C, Society. Designing VR experiences–expectations for teaching and learning in VR. 2021, 24(2):107-119

74. Host'ovecky M, Salgovic I, Viragh R. Serious game in science education: how we can develop mathematical education. In: 2018 16th International Conference on Emerging eLearning Technologies and Applications (ICETA). Starý Smokovec, IEEE, 2018, 191–196 DOI:10.1109/iceta.2018.8572158

75. Squire K, Barnett M, Grant J M, Higginbotham T. Electromagnetism supercharged! Learning physics with digital simulation games. 2004, 513–520

76. Li M C, Tsai C C. Game-based learning in science education: a review of relevant research. Journal of Science Education and Technology, 2013, 22(6): 877–898 DOI:10.1007/s10956-013-9436-x

77. Adams J, Avraamidou D L, Bayram-Jacobs S, Boujaoude L, Bryan A. Christodoulou D, Couso A, Danielsson J, Dillon S. The role of science education in a changing world. NIAS Press, 2018

78. Annetta L A, Minogue J, Holmes S Y, Cheng M T. Investigating the impact of video games on high school students’ engagement and learning about genetics. Computers Education, 2009, 53(1): 74–85 DOI:10.1016/j.compedu.2008.12.020

79. Sánchez J, Olivares R. Problem solving and collaboration using mobile serious games. Computers Education, 2011, 57(3): 1943–1952 DOI:10.1016/j.compedu.2011.04.012

80. Squire K, Simulation. Video games in education. 2003, 2(1):49–62

81. Steinkuehler C, Squire K. Videogames and learning, Cambridge handbook of the learning sciences, 2014, 377–396

82. del Cerro Velázquez F, Morales Méndez G. Augmented reality and mobile devices: a binominal methodological resource for inclusive education (SDG 4). an example in secondary education. Sustainability, 2018, 10(10): 3446 DOI:10.3390/su10103446

83. Milgram P, Takemura H, Utsumi A, Kishino F. Augmented reality: a class of displays on the reality-virtuality continuum. In: SPIE Proceedings", "Telemanipulator and Telepresence Technologies. Boston, MA, SPIE, 1995 DOI:10.1117/12.197321

84. Milgram P, Kishino F, Systems. A taxonomy of mixed reality visual displays. 1994, 77(12):1321–1329

85. Radu I, Schneider B. What can we learn from augmented reality (AR)? Benefits and drawbacks of AR for inquiry-based learning of physics. In: Proceedings of the 2019 CHI conference on human factors in computing systems. 2019, 1–12

86. Jung H, School S E, Lee C, Jhun Y. Development and application of an evaluation tool for serious games. Journal of Korea Association of Information Education, 2014, 18(3): 401–412 DOI:10.14352/jkaie.2014.18.3.401

87. Hwang G J, Chang H F. A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers Education, 2011, 56(4): 1023–1031 DOI:10.1016/j.compedu.2010.12.002

88. Cheng M T, Lin Y W, She H C, Kuo P C. Is immersion of any value? Whether, and to what extent, game immersion experience during serious gaming affects science learning. British Journal of Educational Technology, 2017, 48(2): 246–263 DOI:10.1111/bjet.12386

89. Hess T, Gunter G. Serious game-based and nongame-based online courses: learning experiences and outcomes. British Journal of Educational Technology, 2013, 44(3): 372–385 DOI:10.1111/bjet.12024

90. Masson M E J, Bub D N, Lalonde C E. Video-game training and naïve reasoning about object motion. Applied Cognitive Psychology, 2011, 25(1): 166–173 DOI:10.1002/acp.1658

91. Connolly T M, Boyle E A, MacArthur E, Hainey T, Boyle J M. A systematic literature review of empirical evidence on computer games and serious games. Computers Education, 2012, 59(2): 661–686 DOI:10.1016/j.compedu.2012.03.004

92. Lamb R L, Annetta L, Firestone J, Etopio E. A meta-analysis with examination of moderators of student cognition, affect, and learning outcomes while using serious educational games, serious games, and simulations. Computers in Human Behavior, 2018, 80: 158–167 DOI:10.1016/j.chb.2017.10.040

93. Garneli V, Giannakos M, Chorianopoulos K. Serious games as a malleable learning medium: the effects of narrative, gameplay, and making on students’ performance and attitudes. British Journal of Educational Technology, 2017, 48(3): 842–859 DOI:10.1111/bjet.12455

94. Cowley B, Fantato M, Jennett C, Ruskov M, Ravaja N. Learning when serious: Psychophysiological evaluation of a technology-enhanced learning game. 2014, 17(1):3–16

95. Cowley B, Heikura T, Ravaja N. Learning loops-interactions between guided reflection and experience-based learning in a serious game activity. Journal of Computer Assisted Learning, 2013, 29(4): 348–370 DOI:10.1111/jcal.12013

96. Cowley B, Ravaja N, Heikura T. Cardiovascular physiology predicts learning effects in a serious game activity. Computers Education, 2013, 60(1): 299–309 DOI:10.1016/j.compedu.2012.07.014

97. Liaw S S, Chen G D, Huang H M. Users’ attitudes toward Web-based collaborative learning systems for knowledge management. Computers Education, 2008, 50(3): 950–961 DOI:10.1016/j.compedu.2006.09.007

98. Yu Z G. A meta-analysis of use of serious games in education over a decade. International Journal of Computer Games Technology, 2019, 4797032 DOI:10.1155/2019/4797032

Related

1. Lingfei ZHU, Qi CAO, Yiyu CAI, Development of augmented reality serious games with a vibrotactile feedback jacket Virtual Reality & Intelligent Hardware 2020, 2(5): 454-470