Interactive hepatic parenchymal transection simulation with haptic feedback
1. State Key Laboratory of Virtual Reality Technology and Systems, School of computer science and Engineering, Beihang University, Beijing, 100191 China
2. Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, 100191 China
3. Chinese PLA General Hospital, Beijing, 100039 China
Abstract
Keywords: Virtual surgery ; Hepatic parenchymal transection ; Position-based dynamics
Content







Vertex Amount |
Triangle Amount |
Tetrahedron Amount |
Physical Particle Amount |
Cluster Amount |
Average Cluster Radius/cm | |
---|---|---|---|---|---|---|
Liver | 26721 | 53442 | 831932 | 146090 | 2994 | 0.84 |
Bile Duct | 6825 | 13464 | 1644 | 5424 | 365 | 0.46 |
Hepatic Artery | 13232 | 26460 | 1393 | 4010 | 434 | 0.47 |
Hepatic Vein | 16300 | 32593 | 28263 | 8432 | 77 | 0.45 |
Portal Vein | 22162 | 44318 | 21931 | 6898 | 22 | 0.47 |
Sum | 85240 | 170277 | 885163 | 170854 | 3892 | — |

Sub Steps | Soft Deformation | Haptic Rendering | Topology Update | Mesh Skinning & Graphics Rendering |
---|---|---|---|---|
Time Cost | 36.8 | 1.05 | 98.3 | 20.83 |



Reference
Yang T Y, Whitlock R S, Vasudevan S A. Surgical management of hepatoblastoma and recent advances. Cancers, 2019, 11(12): 1944 DOI:10.3390/cancers11121944
Delp S L, Loan J P, Basdogan C, Buchanan T S, Rosen J M. Surgical simulation: an emerging technology for military medical training. Proceedings of the National Forum: Military Telemedicine on-Line Today Research, Practice, and Opportunities, 1995, 29–34 DOI:10.1109/mtol.1995.504524
Müller M, Heidelberger B, Teschner M, Gross M. Meshless deformations based on shape matching. In: ACM SIGGRAPH 2005 Papers on-SIGGRAPH. Los Angeles, California, New York, ACM Press, 2005, 471–478 DOI:10.1145/1186822.1073216
Macklin M, Müller M, Chentanez N, Kim T Y. Unified particle physics for real-time applications. ACM Transactions on Graphics, 2014, 33(4): 1–12 DOI:10.1145/2601097.2601152
Provot X. Deformation constraints in a mass-spring model to describe rigid cloth behavior. Graphics Interface, 1995 DOI:10.1007/978-1-4471-0817-7_1
Bonet J, Wood R D. Nonlinear continuum mechanics for finite element analysis. Cambridge: Cambridge University Press, 2008 DOI:10.1017/cbo9780511755446
Müller M, Heidelberger B, Hennix M, Ratcliff J. Position based dynamics. Journal of Visual Communication and Image Representation, 2007, 18(2): 109–118 DOI:10.1016/j.jvcir.2007.01.005
Berndt I, Torchelsen R, Maciel A. Efficient surgical cutting with position-based dynamics. IEEE Computer Graphics and Applications, 2017, 37(3): 24–31 DOI:10.1109/mcg.2017.45
Pan J J, Yang Y H, Gao Y, Qin H, Si Y Q. Real-time simulation of electrocautery procedure using meshfree methods in laparoscopic cholecystectomy. The Visual Computer, 2019, 35(6/7/8): 861–872 DOI:10.1007/s00371-019-01680-z
Pan J J, Zhang L Y, Yu P, Shen Y, Wang H P, Hao H M, Qin H. Real-time VR simulation of laparoscopic cholecystectomy based on parallel Position-based dynamics in gpu. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 548–556 DOI:10.1109/vr46266.2020.00076
Lu Z H, Arikatla V S, Han Z Q, Allen B F, De S. A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(4): 495–504 DOI:10.1002/rcs.1561
Yoon S E, Salomon B, Lin M, Manocha D. Fast collision detection between massive models using dynamic simplification. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing-SGP. Nice, France, New York, ACM Press, 2004, 136–146 DOI:10.1145/1057432.1057450
Morris D, Sewell C, Barbagli F, Salisbury K, Blevins N H, Girod S. Visuohaptic simulation of bone surgery for training and evaluation. IEEE Computer Graphics and Applications, 2006, 26(6): 48–57 DOI:10.1109/mcg.2006.140
McNeely W A, Puterbaugh K D, Troy J J. Advances in voxel-based 6-DOF haptic rendering. In: ACM SIGGRAPH 2005 Courses on-SIGGRAPH. Los Angeles, California, New York, ACM Press, 2005 DOI:10.1145/1198555.1198606
Wang D X, Zhang X, Zhang Y R, Xiao J. Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. IEEE Transactions on Haptics, 2013, 6(2): 167–180 DOI:10.1109/toh.2012.63
Wang D X, Shi Y J, Liu S, Zhang Y R, Xiao J. Haptic simulation of organ deformation and hybrid contacts in dental operations. IEEE Transactions on Haptics, 2014, 7(1): 48–60 DOI:10.1109/toh.2014.2304734
Yu G, Wang D X, Zhang Y R, Xiao J. Simulating sharp geometric features in six degrees-of-freedom haptic rendering. IEEE Transactions on Haptics, 2015, 8(1): 67–78 DOI:10.1109/toh.2014.2377745
WangD, JiaoJ, ZhangY, ZhaoX. Computer haptics: haptic modeling and rendering in virtual reality environments. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 881–895 DOI:10.3969/j.issn.1003-9775.2016.06.003
Sui Y, Pan J J, Qin H, Liu H, Lu Y. Real-time simulation of soft tissue deformation and electrocautery procedures in laparoscopic rectal cancer radical surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(4): e1827 DOI:10.1002/rcs.1827
Kim Y, Kim L, Lee D, Shin S, Cho H, Roy F, Park S. Deformable mesh simulation for virtual laparoscopic cholecystectomy training. The Visual Computer, 2015, 31(4): 485–495 DOI:10.1007/s00371-014-0944-3
Li S, Xia Q, Hao A M, Qin H, Zhao Q P. Haptics-equiped interactive PCI simulation for patient-specific surgery training and rehearsing. Science China Information Sciences, 2016, 59(10): 103101 DOI:10.1007/s11432-016-0264-3
Ruthenbeck G S, Hobson J, Carney A S, Sloan S, Sacks R, Reynolds K J. Toward photorealism in endoscopic sinus surgery simulation. American Journal of Rhinology & Allergy, 2013, 27(2): 138–143 DOI:10.2500/ajra.2013.27.3861
Fann J I, Sullivan M E, Skeff K M, Stratos G A, Walker J D, Grossi E A, Verrier E D, Hicks G L, Feins R H. Teaching behaviors in the cardiac surgery simulation environment. The Journal of Thoracic and Cardiovascular Surgery, 2013, 145(1): 45–53 DOI:10.1016/j.jtcvs.2012.07.111
Wang D X, Zhang Y R, Hou J X, Wang Y, Lv P, Chen Y G, Zhao H. iDental: a haptic-based dental simulator and its preliminary user evaluation. IEEE Transactions on Haptics, 2012, 5(4): 332–343 DOI:10.1109/toh.2011.59
Shi Y F, Liu M, Xiong Y S, Cai C, Tan K, Pan X H. The simulation of delineation and splitting in virtual liver surgery. In: 2015 International Conference on Virtual Reality and Visualization (ICVRV). Xiamen, China, IEEE, 2015, 264–268 DOI:10.1109/icvrv.2015.44
https://www.materialise.com/en/medical/mimics
https://www.slicer.org/
Jakob W, Tarini M, Panozzo D, Sorkine-Hornung O. Instant field-aligned meshes. ACM Transactions on Graphics, 2015, 34(6): 1–15 DOI:10.1145/2816795.2818078
https://zbrush.mairuan.com/
Si H. TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software, 2015, 41(2): 1–36 DOI:10.1145/2629697
https://ngsolve.org/
Muller H, Wehle M. Visualization of implicit surfaces using adaptive tetrahedrizations. In: Scientific Visualization Conference. Dagstuhl, Germany, IEEE, 1997, 243 DOI:10.1109/dagstuhl.1997.1423119
Lorensen W E, Cline H E. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 163–169 DOI:10.1145/37402.37422
Ju T, Losasso F, Schaefer S, Warren J. Dual contouring of hermite data. ACM Transactions on Graphics, 2002, 21(3): 339–346 DOI:10.1145/566654.566586
https://en.wikipedia.org/wiki/Component_(graph_theory)
Goldfarb D, Idnani A. A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 1983, 27(1): 1–33 DOI:10.1007/bf02591962
https://gitlab.inria.fr/alta/alta/-/tree/master/external/quadprog++
https://www.3dsystems.com/haptics-devices/touch/specifications