Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(5): 383-396

Published Date:2021-10-20 DOI: 10.1016/j.vrih.2021.09.003

Interactive hepatic parenchymal transection simulation with haptic feedback

Abstract

Background
Liver resection involves surgical removal of a portion of the liver. It is used to treat liver tumors and liver injuries. The complexity and high-risk nature of this surgery prevents novice doctors from practicing it on real patients. Virtual surgery simulation was developed to simulate surgical procedures to enable medical professionals to be trained without requiring a patient, a cadaver, or an animal. Therefore, there is a strong need for the development of a liver resection surgery simulation system. We propose a real-time simulation system that provides realistic visual and tactile feedback for hepatic parenchymal transection.
Methods
The tetrahedron structure and cluster-based shape matching are used for physical model construction, topology update of a three-dimensional liver model soft deformation simulation, and haptic rendering acceleration. During the liver parenchyma separation simulation, a tetrahedral mesh is used for surface triangle subdivision and surface generation of the surgical wound. The shape-matching cluster is separated via component detection on an undirected graph constructed using the tetrahedral mesh.
Results
In our system, cluster-based shape matching is implemented on a GPU, whereas haptic rendering and topology updates are implemented on a CPU. Experimental results show that haptic rendering can be performed at a high frequency (>900Hz), whereas mesh skinning and graphics rendering can be performed at 45fps. The topology update can be executed at an interactive rate (>10Hz) on a single CPU thread.
Conclusions
We propose an interactive hepatic parenchymal transection simulation method based on a tetrahedral structure. The tetrahedral mesh simultaneously supports physical model construction, topology update, and haptic rendering acceleration.

Keyword

Virtual surgery ; Hepatic parenchymal transection ; Position-based dynamics

Cite this article

Hongyu WU, Haonan YU, Fan YE, Jian SUN, Yuan GAO, Ke Tan, Aimin HAO. Interactive hepatic parenchymal transection simulation with haptic feedback. Virtual Reality & Intelligent Hardware, 2021, 3(5): 383-396 DOI:10.1016/j.vrih.2021.09.003

References

1. Yang T Y, Whitlock R S, Vasudevan S A. Surgical management of hepatoblastoma and recent advances. Cancers, 2019, 11(12): 1944 DOI:10.3390/cancers11121944

2. Delp S L, Loan J P, Basdogan C, Buchanan T S, Rosen J M. Surgical simulation: an emerging technology for military medical training. Proceedings of the National Forum: Military Telemedicine on-Line Today Research, Practice, and Opportunities, 1995, 29–34 DOI:10.1109/mtol.1995.504524

3. Müller M, Heidelberger B, Teschner M, Gross M. Meshless deformations based on shape matching. In: ACM SIGGRAPH 2005 Papers on-SIGGRAPH. Los Angeles, California, New York, ACM Press, 2005, 471–478 DOI:10.1145/1186822.1073216

4. Macklin M, Müller M, Chentanez N, Kim T Y. Unified particle physics for real-time applications. ACM Transactions on Graphics, 2014, 33(4): 1–12 DOI:10.1145/2601097.2601152

5. Provot X. Deformation constraints in a mass-spring model to describe rigid cloth behavior. Graphics Interface, 1995 DOI:10.1007/978-1-4471-0817-7_1

6. Bonet J, Wood R D. Nonlinear continuum mechanics for finite element analysis. Cambridge: Cambridge University Press, 2008 DOI:10.1017/cbo9780511755446

7. Müller M, Heidelberger B, Hennix M, Ratcliff J. Position based dynamics. Journal of Visual Communication and Image Representation, 2007, 18(2): 109–118 DOI:10.1016/j.jvcir.2007.01.005

8. Berndt I, Torchelsen R, Maciel A. Efficient surgical cutting with position-based dynamics. IEEE Computer Graphics and Applications, 2017, 37(3): 24–31 DOI:10.1109/mcg.2017.45

9. Pan J J, Yang Y H, Gao Y, Qin H, Si Y Q. Real-time simulation of electrocautery procedure using meshfree methods in laparoscopic cholecystectomy. The Visual Computer, 2019, 35(6/7/8): 861–872 DOI:10.1007/s00371-019-01680-z

10. Pan J J, Zhang L Y, Yu P, Shen Y, Wang H P, Hao H M, Qin H. Real-time VR simulation of laparoscopic cholecystectomy based on parallel Position-based dynamics in gpu. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 548–556 DOI:10.1109/vr46266.2020.00076

11. Lu Z H, Arikatla V S, Han Z Q, Allen B F, De S. A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(4): 495–504 DOI:10.1002/rcs.1561

12. Yoon S E, Salomon B, Lin M, Manocha D. Fast collision detection between massive models using dynamic simplification. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing-SGP. Nice, France, New York, ACM Press, 2004, 136–146 DOI:10.1145/1057432.1057450

13. Morris D, Sewell C, Barbagli F, Salisbury K, Blevins N H, Girod S. Visuohaptic simulation of bone surgery for training and evaluation. IEEE Computer Graphics and Applications, 2006, 26(6): 48–57 DOI:10.1109/mcg.2006.140

14. McNeely W A, Puterbaugh K D, Troy J J. Advances in voxel-based 6-DOF haptic rendering. In: ACM SIGGRAPH 2005 Courses on-SIGGRAPH. Los Angeles, California, New York, ACM Press, 2005 DOI:10.1145/1198555.1198606

15. Wang D X, Zhang X, Zhang Y R, Xiao J. Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. IEEE Transactions on Haptics, 2013, 6(2): 167–180 DOI:10.1109/toh.2012.63

16. Wang D X, Shi Y J, Liu S, Zhang Y R, Xiao J. Haptic simulation of organ deformation and hybrid contacts in dental operations. IEEE Transactions on Haptics, 2014, 7(1): 48–60 DOI:10.1109/toh.2014.2304734

17. Yu G, Wang D X, Zhang Y R, Xiao J. Simulating sharp geometric features in six degrees-of-freedom haptic rendering. IEEE Transactions on Haptics, 2015, 8(1): 67–78 DOI:10.1109/toh.2014.2377745

18. WangD, JiaoJ, ZhangY, ZhaoX. Computer haptics: haptic modeling and rendering in virtual reality environments. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 881–895 DOI:10.3969/j.issn.1003-9775.2016.06.003

19. Sui Y, Pan J J, Qin H, Liu H, Lu Y. Real-time simulation of soft tissue deformation and electrocautery procedures in laparoscopic rectal cancer radical surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(4): e1827 DOI:10.1002/rcs.1827

20. Kim Y, Kim L, Lee D, Shin S, Cho H, Roy F, Park S. Deformable mesh simulation for virtual laparoscopic cholecystectomy training. The Visual Computer, 2015, 31(4): 485–495 DOI:10.1007/s00371-014-0944-3

21. Li S, Xia Q, Hao A M, Qin H, Zhao Q P. Haptics-equiped interactive PCI simulation for patient-specific surgery training and rehearsing. Science China Information Sciences, 2016, 59(10): 103101 DOI:10.1007/s11432-016-0264-3

22. Ruthenbeck G S, Hobson J, Carney A S, Sloan S, Sacks R, Reynolds K J. Toward photorealism in endoscopic sinus surgery simulation. American Journal of Rhinology & Allergy, 2013, 27(2): 138–143 DOI:10.2500/ajra.2013.27.3861

23. Fann J I, Sullivan M E, Skeff K M, Stratos G A, Walker J D, Grossi E A, Verrier E D, Hicks G L, Feins R H. Teaching behaviors in the cardiac surgery simulation environment. The Journal of Thoracic and Cardiovascular Surgery, 2013, 145(1): 45–53 DOI:10.1016/j.jtcvs.2012.07.111

24. Wang D X, Zhang Y R, Hou J X, Wang Y, Lv P, Chen Y G, Zhao H. iDental: a haptic-based dental simulator and its preliminary user evaluation. IEEE Transactions on Haptics, 2012, 5(4): 332–343 DOI:10.1109/toh.2011.59

25. Shi Y F, Liu M, Xiong Y S, Cai C, Tan K, Pan X H. The simulation of delineation and splitting in virtual liver surgery. In: 2015 International Conference on Virtual Reality and Visualization (ICVRV). Xiamen, China, IEEE, 2015, 264–268 DOI:10.1109/icvrv.2015.44

26. https://www.materialise.com/en/medical/mimics

27. https://www.slicer.org/

28. Jakob W, Tarini M, Panozzo D, Sorkine-Hornung O. Instant field-aligned meshes. ACM Transactions on Graphics, 2015, 34(6): 1–15 DOI:10.1145/2816795.2818078

29. https://zbrush.mairuan.com/

30. Si H. TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software, 2015, 41(2): 1–36 DOI:10.1145/2629697

31. https://ngsolve.org/

32. Muller H, Wehle M. Visualization of implicit surfaces using adaptive tetrahedrizations. In: Scientific Visualization Conference. Dagstuhl, Germany, IEEE, 1997, 243 DOI:10.1109/dagstuhl.1997.1423119

33. Lorensen W E, Cline H E. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 163–169 DOI:10.1145/37402.37422

34. Ju T, Losasso F, Schaefer S, Warren J. Dual contouring of hermite data. ACM Transactions on Graphics, 2002, 21(3): 339–346 DOI:10.1145/566654.566586

35. https://en.wikipedia.org/wiki/Component_(graph_theory)

36. Goldfarb D, Idnani A. A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 1983, 27(1): 1–33 DOI:10.1007/bf02591962

37. https://gitlab.inria.fr/alta/alta/-/tree/master/external/quadprog++

38. https://www.3dsystems.com/haptics-devices/touch/specifications