2021, 3(5): 383-396
Published Date:2021-10-20 DOI: 10.1016/j.vrih.2021.09.003
Interactive hepatic parenchymal transection simulation with haptic feedback
Abstract
Keyword
Cite this article
References
1.
Yang T Y, Whitlock R S, Vasudevan S A. Surgical management of hepatoblastoma and recent advances. Cancers, 2019, 11(12): 1944 DOI:10.3390/cancers11121944
2.
Delp S L, Loan J P, Basdogan C, Buchanan T S, Rosen J M. Surgical simulation: an emerging technology for military medical training. Proceedings of the National Forum: Military Telemedicine on-Line Today Research, Practice, and Opportunities, 1995, 29–34 DOI:10.1109/mtol.1995.504524
3.
Müller M, Heidelberger B, Teschner M, Gross M. Meshless deformations based on shape matching. In: ACM SIGGRAPH 2005 Papers on-SIGGRAPH. Los Angeles, California, New York, ACM Press, 2005, 471–478 DOI:10.1145/1186822.1073216
4.
Macklin M, Müller M, Chentanez N, Kim T Y. Unified particle physics for real-time applications. ACM Transactions on Graphics, 2014, 33(4): 1–12 DOI:10.1145/2601097.2601152
5.
Provot X. Deformation constraints in a mass-spring model to describe rigid cloth behavior. Graphics Interface, 1995 DOI:10.1007/978-1-4471-0817-7_1
6.
Bonet J, Wood R D. Nonlinear continuum mechanics for finite element analysis. Cambridge: Cambridge University Press, 2008 DOI:10.1017/cbo9780511755446
7.
Müller M, Heidelberger B, Hennix M, Ratcliff J. Position based dynamics. Journal of Visual Communication and Image Representation, 2007, 18(2): 109–118 DOI:10.1016/j.jvcir.2007.01.005
8.
Berndt I, Torchelsen R, Maciel A. Efficient surgical cutting with position-based dynamics. IEEE Computer Graphics and Applications, 2017, 37(3): 24–31 DOI:10.1109/mcg.2017.45
9.
Pan J J, Yang Y H, Gao Y, Qin H, Si Y Q. Real-time simulation of electrocautery procedure using meshfree methods in laparoscopic cholecystectomy. The Visual Computer, 2019, 35(6/7/8): 861–872 DOI:10.1007/s00371-019-01680-z
10.
Pan J J, Zhang L Y, Yu P, Shen Y, Wang H P, Hao H M, Qin H. Real-time VR simulation of laparoscopic cholecystectomy based on parallel Position-based dynamics in gpu. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 548–556 DOI:10.1109/vr46266.2020.00076
11.
Lu Z H, Arikatla V S, Han Z Q, Allen B F, De S. A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(4): 495–504 DOI:10.1002/rcs.1561
12.
Yoon S E, Salomon B, Lin M, Manocha D. Fast collision detection between massive models using dynamic simplification. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing-SGP. Nice, France, New York, ACM Press, 2004, 136–146 DOI:10.1145/1057432.1057450
13.
Morris D, Sewell C, Barbagli F, Salisbury K, Blevins N H, Girod S. Visuohaptic simulation of bone surgery for training and evaluation. IEEE Computer Graphics and Applications, 2006, 26(6): 48–57 DOI:10.1109/mcg.2006.140
14.
McNeely W A, Puterbaugh K D, Troy J J. Advances in voxel-based 6-DOF haptic rendering. In: ACM SIGGRAPH 2005 Courses on-SIGGRAPH. Los Angeles, California, New York, ACM Press, 2005 DOI:10.1145/1198555.1198606
15.
Wang D X, Zhang X, Zhang Y R, Xiao J. Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. IEEE Transactions on Haptics, 2013, 6(2): 167–180 DOI:10.1109/toh.2012.63
16.
Wang D X, Shi Y J, Liu S, Zhang Y R, Xiao J. Haptic simulation of organ deformation and hybrid contacts in dental operations. IEEE Transactions on Haptics, 2014, 7(1): 48–60 DOI:10.1109/toh.2014.2304734
17.
Yu G, Wang D X, Zhang Y R, Xiao J. Simulating sharp geometric features in six degrees-of-freedom haptic rendering. IEEE Transactions on Haptics, 2015, 8(1): 67–78 DOI:10.1109/toh.2014.2377745
18.
WangD, JiaoJ, ZhangY, ZhaoX. Computer haptics: haptic modeling and rendering in virtual reality environments. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 881–895 DOI:10.3969/j.issn.1003-9775.2016.06.003
19.
Sui Y, Pan J J, Qin H, Liu H, Lu Y. Real-time simulation of soft tissue deformation and electrocautery procedures in laparoscopic rectal cancer radical surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(4): e1827 DOI:10.1002/rcs.1827
20.
Kim Y, Kim L, Lee D, Shin S, Cho H, Roy F, Park S. Deformable mesh simulation for virtual laparoscopic cholecystectomy training. The Visual Computer, 2015, 31(4): 485–495 DOI:10.1007/s00371-014-0944-3
21.
Li S, Xia Q, Hao A M, Qin H, Zhao Q P. Haptics-equiped interactive PCI simulation for patient-specific surgery training and rehearsing. Science China Information Sciences, 2016, 59(10): 103101 DOI:10.1007/s11432-016-0264-3
22.
Ruthenbeck G S, Hobson J, Carney A S, Sloan S, Sacks R, Reynolds K J. Toward photorealism in endoscopic sinus surgery simulation. American Journal of Rhinology & Allergy, 2013, 27(2): 138–143 DOI:10.2500/ajra.2013.27.3861
23.
Fann J I, Sullivan M E, Skeff K M, Stratos G A, Walker J D, Grossi E A, Verrier E D, Hicks G L, Feins R H. Teaching behaviors in the cardiac surgery simulation environment. The Journal of Thoracic and Cardiovascular Surgery, 2013, 145(1): 45–53 DOI:10.1016/j.jtcvs.2012.07.111
24.
Wang D X, Zhang Y R, Hou J X, Wang Y, Lv P, Chen Y G, Zhao H. iDental: a haptic-based dental simulator and its preliminary user evaluation. IEEE Transactions on Haptics, 2012, 5(4): 332–343 DOI:10.1109/toh.2011.59
25.
Shi Y F, Liu M, Xiong Y S, Cai C, Tan K, Pan X H. The simulation of delineation and splitting in virtual liver surgery. In: 2015 International Conference on Virtual Reality and Visualization (ICVRV). Xiamen, China, IEEE, 2015, 264–268 DOI:10.1109/icvrv.2015.44
26.
https://www.materialise.com/en/medical/mimics
27.
https://www.slicer.org/
28.
Jakob W, Tarini M, Panozzo D, Sorkine-Hornung O. Instant field-aligned meshes. ACM Transactions on Graphics, 2015, 34(6): 1–15 DOI:10.1145/2816795.2818078
29.
https://zbrush.mairuan.com/
30.
Si H. TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software, 2015, 41(2): 1–36 DOI:10.1145/2629697
31.
https://ngsolve.org/
32.
Muller H, Wehle M. Visualization of implicit surfaces using adaptive tetrahedrizations. In: Scientific Visualization Conference. Dagstuhl, Germany, IEEE, 1997, 243 DOI:10.1109/dagstuhl.1997.1423119
33.
Lorensen W E, Cline H E. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 163–169 DOI:10.1145/37402.37422
34.
Ju T, Losasso F, Schaefer S, Warren J. Dual contouring of hermite data. ACM Transactions on Graphics, 2002, 21(3): 339–346 DOI:10.1145/566654.566586
35.
https://en.wikipedia.org/wiki/Component_(graph_theory)
36.
Goldfarb D, Idnani A. A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 1983, 27(1): 1–33 DOI:10.1007/bf02591962
37.
https://gitlab.inria.fr/alta/alta/-/tree/master/external/quadprog++
38.
https://www.3dsystems.com/haptics-devices/touch/specifications