Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(4): 315-335

Published Date:2021-8-20 DOI: 10.1016/j.vrih.2021.08.005

Development and application of digital assistive teaching system for anatomy

Abstract

Background
Anatomy is a required course for all medicine-related industries. In recent decades, the teaching quality and effect of anatomy have been compromised by factors including a decrease in human body specimens, dampened enthusiasm for the discipline, reduced teaching hours of anatomy, scale expansion of medical education, and obstacles in performing field autopsies and observations.
Methods
Based on China's digitalized visible human research achievements, this article extracts the boundary information of anatomic structures from tomographic images, constructs three-dimensional (3D) digital anatomical models with authentic texture information, and develops an anatomy assistive teaching system for teachers and students based on the knowledge points of anatomy, to meet the anatomy teaching requirements of different majors at various levels.
Results
This scientific, complete, and holistic system has produced over 6000 3D digital anatomical models, 5000 anatomy knowledge points, 50 anatomical operation videos, and 150 micro demonstration classes, with teaching contents for different majors and levels, such as systematic anatomy, topographic anatomy, sectional anatomy, anatomy of motion, and virtual anatomical operation table. Ranging from network terminals, desktops, touchscreen 3D displays, desktops, and projection 3D volumetric displays to augmented reality, its diversified interactive forms meet the requirements for a learning environment in different settings.
Conclusions
With multiple teaching and learning links covered, such as teaching environment, teaching resources, instructional slides, autonomous learning, and learning effect evaluation, this novel teaching system serves as a vital component and a necessary resource in anatomy teaching and functions as an important supplement to traditional anatomy teaching. Applied and promoted in most medical colleges and schools in China, this system has been recognized and approved by anatomy teachers and students, and plays a positive role in guaranteeing the effect and quality of anatomy teaching.

Keyword

Teaching anatomy ; Anatomy education ; Virtual reality ; Simulation ; Digital anatomy ; Digital human

Cite this article

Na ZHANG, Liwen TAN, Fengying LI, Bing HAN, Yifa XU. Development and application of digital assistive teaching system for anatomy. Virtual Reality & Intelligent Hardware, 2021, 3(4): 315-335 DOI:10.1016/j.vrih.2021.08.005

References

1. McLachlan J C, Patten D. Anatomy teaching: ghosts of the past, present and future. Medical Education, 2006, 40(3): 243–253 DOI:10.1111/j.1365-2929.2006.02401.x

2. Chia T, Oyeniran O. Anatomy education in Nigeria: challenges and prospects. Journal of Contemporary Medical Education, 2019, 9(3): 61 DOI:10.5455/jcme.20190531113058s

3. Chia T I, Oyeniran O I, Ajagbe A O, Onigbinde O A, Oraebosi M I. The symptoms and stress experienced by medical students in anatomy dissection halls. Journal of Taibah University Medical Sciences, 2020, 15(1): 8–13 DOI:10.1016/j.jtumed.2020.01.001

4. Vorstenbosch M A T M, Kooloos J G M, Bolhuis S M, Laan R F J M. An investigation of anatomical competence in junior medical doctors. Anatomical Sciences Education, 2016, 9(1): 8–17 DOI:10.1002/ase.1513

5. Orsbon C P, Kaiser R S, Ross C F. Physician opinions about an anatomy core curriculum: a case for medical imaging and vertical integration. Anatomical Sciences Education, 2014, 7(4): 251–261 DOI:10.1002/ase.1401

6. Azer S A, Eizenberg N. Do we need dissection in an integrated problem-based learning medical course? Perceptions of first- and second-year students. Surgical and Radiologic Anatomy, 2007, 29(2): 173–180 DOI:10.1007/s00276-007-0180-x

7. Dixon F, Juszczak M, Magee T, Woodgate F. Why anatomy knowledge is important: a case report of a pseudoaneurysm secondary to peripheral venouscannula insertion.European Journal of Vascular and Endovascular Surgery, 2018, 3, 1–3

8. Doomernik D E, van Goor H, Kooloos J G M, ten Broek R P. Longitudinal retention of anatomical knowledge in second-year medical students. Anatomical Sciences Education, 2017, 10(3): 242–248 DOI:10.1002/ase.1656

9. Yammine K. The current status of anatomy knowledge: where are we now? Where do we need to go and how do we get there? Teaching and Learning in Medicine, 2014, 26(2): 184–188 DOI:10.1080/10401334.2014.883985

10. Onigbinde O A, Chia T, Oyeniran O I, Ajagbe A O. The place of cadaveric dissection in post-COVID-19 anatomy education. Morphologie, 2020 DOI:10.1016/j.morpho.2020.12.004

11. Norcini J. The power of feedback. Medical Education, 2010, 44(1): 16–17 DOI:10.1111/j.1365-2923.2009.03542.x

12. Hadie S N H, Hassan A, Ismail Z I M, Asari M A, Khan A A, Kasim F, Yusof N A M, Manan H A, Muda T F M T, Arifin W N, Yusoff M S B. Developing constructs of anatomy education environment measurement: a Delphi study. Procedia- Social and Behavioral Sciences, 2014, 116: 4219–4223 DOI:10.1016/j.sbspro.2014.01.920

13. Estai M, Bunt S. Best teaching practices in anatomy education: a critical review. Annals of Anatomy-Anatomischer Anzeiger, 2016, 208: 151–157 DOI:10.1016/j.aanat.2016.02.010

14. Pather N. Teaching anatomy: prosections and dissections. In: Teaching Anatomy. Cham: Springer International Publishing, 2014, 213–221. DOI:10.1007/978-3-319-08930-0_24

15. Estai M, Bunt S. Best teaching practices in anatomy education: a critical review. Annals of Anatomy-Anatomischer Anzeiger, 2016, 208: 151–157 DOI:10.1016/j.aanat.2016.02.010

16. Tam M D B S, Hart A R, Williams S M, Holland R, Heylings D, Leinster S. Evaluation of a computer program ('disect') to consolidate anatomy knowledge: a randomised-controlled trial. Medical Teacher, 2010, 32(3): e138–e142 DOI:10.3109/01421590903144110

17. Trelease R B. Anatomical informatics: Millennial perspectives on a newer frontier. The Anatomical Record, 2002, 269(5): 224–235 DOI:10.1002/ar.10177

18. Fyfe G, Fyfe S, Dye D, Crabb H. Use of anatomage tables in a large first year core unit. In: Proceedings of the Electric Dreams 30th Ascilite Conference. Sydney, Macquarie University, 2013

19. Hołda M K, Stefura T, Koziej M, Skomarovska O, Jasińska K A, Sałabun W, Klimek-Piotrowska W. Alarming decline in recognition of anatomical structures amongst medical students and physicians. Annals of Anatomy, 2019, 221: 48–56 DOI:10.1016/j.aanat.2018.09.004

20. Ellis H. Medico-legal litigation and its links with surgical anatomy. Surgery (Oxford), 2002, 20(8): i–ii DOI:10.1383/surg.20.8.0.14518

21. Cahill D R, Leonard R J, Marks S C. Standards in health care and medical education. Clinical Anatomy (New York, N.Y.), 2000, 13(2): 150 DOI:10.1002/(sici)1098-2353(2000)13:2##小于##150:aid-ca12##大于##3.0.co;2-v

22. Pommert A, Höhne K H, Pflesser B, Richter E, Riemer M, Schiemann T, Schubert R, Schumacher U, Tiede U. Creating a high-resolution spatial/symbolic model of the inner organs based on the Visible Human. Medical Image Analysis, 2001, 5(3): 221–228 DOI:10.1016/s1361-8415(01)00044-5

23. Wu Y, Tan L W, Li Y, Fang B J, Xie B, Wu T N, Li Q Y, Qiu M G, Liu G J, Li K, Xu H T, Luo N, Zhang S X. Creation of a female and male segmentation dataset based on Chinese Visible Human (CVH). Computerized Medical Imaging and Graphics, 2012, 36(4): 336–342 DOI:10.1016/j.compmedimag.2012.01.003

24. Park J S, Jung Y W, Lee J W, Shin D S, Chung M S, Riemer M, Handels H. Generating useful images for medical applications from the Visible Korean Human. Computer Methods and Programs in Biomedicine, 2008, 92(3): 257–266 DOI:10.1016/j.cmpb.2008.07.007

25. Zhang S X, Heng P A, Liu Z J, Tan L W, Qiu M G, Li Q Y, Liao R X, Li K, Cui G Y, Guo Y L, Yang X P, Liu G J, Shan J L, Liu J J, Zhang W G, Chen X H, Chen J H, Wang J, Chen W, Lu M, You J, Pang X L, Xiao H, Xie Y M. Creation of the Chinese visible human data set. Anatomical Record. Part B, New Anatomist, 2003, 275(1): 190–195 DOI:10.1002/ar.b.10035

26. Fang B J, Wu Y, Chu C, Li Y, Luo N, Liu K J, Tan L W, Zhang S X. Creation of a Virtual Anatomy System based on Chinese Visible Human data sets. Surgical and Radiologic Anatomy, 2017, 39(4): 441–449 DOI:10.1007/s00276-016-1741-7

27. Zou J H, Hong L P, Zhu J G. Human anatomy. Beijing: Science Press, 2005, 1–4

28. Wu Y, Song Y, Fang B J, Tan L W, Li Y, Zhang S X. A virtual anatomy system based on Chinese digital human body. Journal of Anatomy, 2017, 040(001): 44–46

29. de Faria J W V, Teixeira M J, de Moura Sousa Júnior L, Otoch J P, Figueiredo E G. Virtual and stereoscopic anatomy: when virtual reality meets medical education. Journal of Neurosurgery, 2016, 125(5): 1105–1111 DOI:10.3171/2015.8.jns141563

30. Zhang Q J, Chen J X, Li G C. Application of digital human anatomy system in experimental teaching of human anatomy. Journal of Youjiang Medical College for Nationalities, 2015, 4: 649-649

31. Zheng H Y, Zhou Y P, Huang Y. Application of digital human platform in anatomy flipping classroom teaching. Journal of Anhui Normal University (Natural Science Edition), 2019

32. Chen L D, Li X M. Application of "digital human anatomy system" in anatomy experimental teaching. The 6th National Anatomy Technical Conference of Chinese Anatomical Society, 2016

33. Fang B J, Wu Y, Chu C, Li Y, Luo N, Liu K J, Tan L W, Zhang S X. Creation of a Virtual Anatomy System based on Chinese Visible Human data sets. Surgical and Radiologic Anatomy, 2017, 39(4): 441–449 DOI:10.1007/s00276-016-1741-7

34. Liu K J, Fang B J, Wu Y, Li Y, Jin J, Tan L W, Zhang S X. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region. Anatomical Science International, 2013, 88(4): 254–258 DOI:10.1007/s12565-013-0186-x

35. Li Q Y, Ran X, Zhang S X, Tan L W, Qiu M G. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching. Journal of Craniofacial Surgery, 2014, 25(1): 303–307 DOI:10.1097/scs.0b013e3182a4c54a

36. Zhang X Q, Yang J Y, Chen N, Zhang S X, Xu Y F, Tan L W. Modeling and simulation of an anatomy teaching system. Visual Computing for Industry, Biomedicine, and Art, 2019, 2(1): 1–8 DOI:10.1186/s42492-019-0019-4

37. Preim B, Saalfeld P. A survey of virtual human anatomy education systems. Computers & Graphics, 2018, 71: 132–153 DOI:10.1016/j.cag.2018.01.005

38. Wu Y, Tan L W, Li Y, Fang B J, Xie B, Wu T N, Li Q Y, Qiu M G, Liu G J, Li K, Xu H T, Luo N, Zhang S X. Creation of a female and male segmentation dataset based on Chinese Visible Human (CVH). Computerized Medical Imaging and Graphics, 2012, 36(4): 336–342 DOI:10.1016/j.compmedimag.2012.01.003

39. Digihuman. Digihuman won the second prize of national teaching achievement of Higher Education. http://digihuman.com/show-21-33-1.html. 2018

Related

1. Wenmin ZHU, Xiumin FAN, Yanxin ZHANG, Applications and research trends of digital human models in the manufacturing industry Virtual Reality & Intelligent Hardware 2019, 1(6): 558-579

2. Hengwei XU, Siru LI, Wenpeng SONG, Jiajun SUN, Xinli WU, Xiaoqi WANG, Wenzhen YANG, Zhigeng PAN, Abdennour EI RHALIBI, Thermal perception method of virtual chemistry experiments Virtual Reality & Intelligent Hardware 2020, 2(4): 305-315

3. Aimin HAO, Jiahao CUI, Shuai LI, Qinping ZHAO, Personalized cardiovascular intervention simulation system Virtual Reality & Intelligent Hardware 2020, 2(2): 104-118

4. Jinli ZHANG, Hui WANG, Bowu LIU, Dongya CHU, Xu XU, Guoqing PEI, Virtual assembly framework for performance analysis of large optics Virtual Reality & Intelligent Hardware 2020, 2(1): 28-42

5. Qian CHEN, Yue WANG, Hui WANG, Xubo YANG, Data-driven simulation in fluids animation: A survey Virtual Reality & Intelligent Hardware 2021, 3(2): 87-104

6. Yi ZHENG, Xiaoyu CHI, Yanyun CHEN, Enhua WU, Stains on imperfect textile Virtual Reality & Intelligent Hardware 2021, 3(2): 142-155

7. Zhongyao YANG, Maolin WU, Shiguang LIU, Helmholtz decomposition-based SPH Virtual Reality & Intelligent Hardware 2021, 3(2): 118-128

8. Xiaodong YANG, Jianhua LIU, Naijing LV, Huanxiong XIA, A review of cable layout design and assembly simulation in virtual environments Virtual Reality & Intelligent Hardware 2019, 1(6): 543-557

9. Chan QIU, Shien ZHOU, Zhenyu LIU, Qi GAO, Jianrong TAN, Digital assembly technology based on augmented reality and digital twins: a review Virtual Reality & Intelligent Hardware 2019, 1(6): 597-610

10. Rongda ZENG, Zihao WU, Shengbang DENG, Jian ZHU, Xiaoyu CHI, Adaptive smoothing length method based on weighted average of neighboring particle density for SPH fluid simulation Virtual Reality & Intelligent Hardware 2021, 3(2): 129-141

11. Luan LYU, Wei CAO, Enhua WU, Zhixin YANG, Affine particle-in-cell method for two-phase liquid simulation Virtual Reality & Intelligent Hardware 2021, 3(2): 105-117

12. Jing ZHAO, Fei ZHU, Liyou XU, Yong TANG, Sheng LI, A homogenization method for nonlinear inhomogeneous elastic materials Virtual Reality & Intelligent Hardware 2021, 3(2): 156-170

13. Yuxiang ZHAO, Xiaowei AN, Nongliang SUN, Virtual simulation experiment of the design and manufacture of a beer bottle-defect detection system Virtual Reality & Intelligent Hardware 2020, 2(4): 354-367

14. Fan YE, Luwei LIU, Bin YAN, Xiaohan ZHAO, Aimin HAO, Orthodontic simulation system with force feedback for training complete bracket placement procedures Virtual Reality & Intelligent Hardware 2021, 3(4): 261-273

15. Yang LI, Dong WU, Jin HUANG, Feng TIAN, Hong'an WANG, Guozhong DAI, Influence of multi-modality on moving target selection in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(3): 303-315

16. Yang LI, Jin HUANG, Feng TIAN, Hong-An WANG, Guo-Zhong DAI, Gesture interaction in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(1): 84-112

17. Athirah SYAMIMI, Yiwei GONG, Ryan LIEW, VR industrial applicationsA singapore perspective Virtual Reality & Intelligent Hardware 2020, 2(5): 409-420

18. Jie GUO, Dongdong WENG, Yue LIU, Qiyong CHEN, Yongtian WANG, Analysis of teenagers' preferences and concerns regarding HMDs in education Virtual Reality & Intelligent Hardware 2021, 3(5): 369-382

19. Susu HUANG, Daqing QI, Jiabin YUAN, Huawei TU, Review of studies on target acquisition in virtual reality based on the crossing paradigm Virtual Reality & Intelligent Hardware 2019, 1(3): 251-264

20. Yukang YAN, Xin YI, Chun YU, Yuanchun SHI, Gesture-based target acquisition in virtual and augmented reality Virtual Reality & Intelligent Hardware 2019, 1(3): 276-289

21. Yuan GAO, Le XIE, A review on the application of augmented reality in craniomaxillofacial surgery Virtual Reality & Intelligent Hardware 2019, 1(1): 113-120

22. Yuan CHANG, Guo-Ping WANG, A review on image-based rendering Virtual Reality & Intelligent Hardware 2019, 1(1): 39-54

23. Shiguang QIU, Shuntao LIU, Deshuai KONG, Qichang HE, Three-dimensional virtual-real mapping of aircraft autom-atic spray operation and online simulation monitoring Virtual Reality & Intelligent Hardware 2019, 1(6): 611-621

24. Xu PENG, Zhenyu GAO, Yitong DING, Dongfeng ZHAO, Xiaoyu CHI, Study of ghost image suppression in polarized catadioptric virtual reality optical systems Virtual Reality & Intelligent Hardware 2020, 2(1): 70-78

25. Zhiming HU, Sheng LI, Meng GAI, Temporal continuity of visual attention for future gaze prediction in immersive virtual reality Virtual Reality & Intelligent Hardware 2020, 2(2): 142-152

26. Lihui HUANG, Siti Faatihah Binte Mohd TAIB, Ryan Aung BA, Zhe An GOH, Mengshan XU, Virtual reality research and development in NTU Virtual Reality & Intelligent Hardware 2020, 2(5): 394-408

27. Stéphanie PHILIPPE, Alexis D. SOUCHET, Petros LAMERAS, Panagiotis PETRIDIS, Julien CAPORAL, Gildas COLDEBOEUF, Hadrien DUZAN, Multimodal teaching, learning and training in virtual reality: a review and case study Virtual Reality & Intelligent Hardware 2020, 2(5): 421-442

28. Jia Ming LEE, Xinxing XIA, Clemen OW, Felix CHUA, Yunqing GUAN, VEGO: A novel design towards customizable and adjustable head-mounted display for VR Virtual Reality & Intelligent Hardware 2020, 2(5): 443-453

29. Jingcheng QIAN, Yancong MA, Zhigeng PAN, Xubo YANG, Effects of Virtual-real fusion on immersion, presence, and learning performance in laboratory education Virtual Reality & Intelligent Hardware 2020, 2(6): 569-584

30. TJ MATTHEWS, Feng TIAN, Tom DOLBY, Interaction design for paediatric emergency VR training Virtual Reality & Intelligent Hardware 2020, 2(4): 330-344

31. Hongxin ZHANG, Jin ZHANG, Xue YIN, Kan ZHOU, Zhigeng PAN, Abdennour EI RHALIBI, Cloud-to-end rendering and storage management for virtual reality in experimental education Virtual Reality & Intelligent Hardware 2020, 2(4): 368-380

32. Xiang ZHOU, Liyu TANG, Ding LIN, Wei HAN, Virtual & augmented reality for biological microscope in experiment education Virtual Reality & Intelligent Hardware 2020, 2(4): 316-329

33. Haoyu WANG, Jianhuang WU, A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction Virtual Reality & Intelligent Hardware 2021, 3(4): 302-314

34. Daniel VANKOV, David JANKOVSZKY, Effects of using headset-delivered virtual reality in road safety research: A systematic review of empirical studies Virtual Reality & Intelligent Hardware 2021, 3(5): 351-368

35. Dangxiao WANG, Yuan GUO, Shiyi LIU, Yuru ZHANG, Weiliang XU, Jing XIAO, Haptic display for virtual reality: progress and challenges Virtual Reality & Intelligent Hardware 2019, 1(2): 136-162

36. Aiguo SONG, Liyue FU, Multi-dimensional force sensor for haptic interaction: a review Virtual Reality & Intelligent Hardware 2019, 1(2): 121-135

37. Mohammad Mahmudul ALAM, S. M. Mahbubur RAHMAN, Affine transformation of virtual 3D object using 2D localization of fingertips Virtual Reality & Intelligent Hardware 2020, 2(6): 534-555

38. Yuan WEI, Dongdong GUAN, Qiuchen WANG, Xiangxian LI, Yulong BIAN, Pu QIN, Yanning XU, Chenglei YANG, Virtual fire drill system supporting co-located collaboration Virtual Reality & Intelligent Hardware 2019, 1(3): 290-302