A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction
1. University of Chinese Academy of Sciences, Beijing 100049, China
2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Abstract
Keywords: Virtual reality ; Interventional radiology ; Surgical skills training ; Surgery simulator ; Catheter ablation
Content




Parameters | Value | Remarks |
---|---|---|
![]() |
1.0 | Scale for the vascular model used in the simulation |
![]() |
1.0E-10 |
Once the calculated displacement for a surgical vertex is less than
![]() |
![]() |
7.5 | Average length of the rods of the simulated devices |
![]() |
1.5 | Proportional parameter of the feedback coefficient |
![]() |
0.03 | Integral parameter of the feedback coefficient |
![]() |
4.0 | Radius of the bounding sphere attached to the device centerline point |





Subject | Factor | Mean (SD) |
---|---|---|
Realism | X-ray imaging | 4.1 (0.135) |
Heartbeat | 4.5 (0.372) | |
Haptic feedback | 3.8 (0.781) | |
Instrument behavior | 4.4 (0.596) | |
Instrument manipulation | 4.2 (0.574) | |
Multiple instruments interaction | 4.6 (0.635) | |
Real-time | No latency when manipulating a single instrument | 4.8 (0.231) |
No latency when interacting with beating heart | 4.7 (0.338) | |
No latency when manipulating multiple instruments | 4.7 (0.275) | |
Usefulness | Compared with traditional training methods | 4.5 (0.733) |
Useful for skill training | 4.6 (0.831) | |
Useful for skill assessing | 3.9 (0.681) |
Reference
Mitchell E L, Sheahan M G, Schwiesow M. Simulation in vascular surgery. In: Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties. Cham: Springer International Publishing, 2019, 327–347. DOI:10.1007/978-3-319-98276-2_26
Gallagher A G, Cates C U. Virtual reality training for the operating room and cardiac catheterisation laboratory. The Lancet, 2004, 364(9444): 1538–1540 DOI:10.1016/s0140-6736(04)17278-4
Dawson D L, Meyer J, Lee E S, Pevec W C. Training with simulation improves residents' endovascular procedure skills. Journal of Vascular Surgery, 2007, 45(1): 149–154 DOI:10.1016/j.jvs.2006.09.003
Bagai A, O'Brien S, Al Lawati H, Goyal P, Ball W, Grantcharov T, Fam N. Mentored simulation training improves procedural skills in cardiac catheterization. Circulation: Cardiovascular Interventions, 2012, 5(5): 672–679 DOI:10.1161/circinterventions.112.970772
Badash I, Burtt K, Solorzano C A, Carey J N. Innovations in surgery simulation: a review of past, current and future techniques. Annals of Translational Medicine, 2016, 4(23): 453 DOI:10.21037/atm.2016.12.24
Iwata N, Fujiwara M, Kodera Y, Tanaka C, Ohashi N, Nakayama G, Koike M, Nakao A. Construct validity of the LapVR virtual-reality surgical simulator. Surgical Endoscopy, 2011, 25(2): 423–428 DOI:10.1007/s00464-010-1184-x
Fucentese S F, Rahm S, Wieser K, Spillmann J, Harders M, Koch P P. Evaluation of a virtual-reality-based simulator using passive haptic feedback for knee arthroscopy. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23(4): 1077–1085 DOI:10.1007/s00167-014-2888-6
Yamaguchi S, Konishi K, Yasunaga T, Yoshida D, Kinjo N, Kobayashi K, Ieiri S, Okazaki K, Nakashima H, Tanoue K, Maehara Y, Hashizume M. Construct validity for eye-hand coordination skill on a virtual reality laparoscopic surgical simulator. Surgical Endoscopy, 2007, 21(12): 2253–2257 DOI:10.1007/s00464-007-9362-1
Rahm S, Germann M, Hingsammer A, Wieser K, Gerber C. Validation of a virtual reality-based simulator for shoulder arthroscopy. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24(5): 1730–1737 DOI:10.1007/s00167-016-4022-4
Weidenbach M, Wick C, Pieper S, Quast K J, Fox T, Grunst G, Redel D A. Augmented reality simulator for training in two-dimensional echocardiography. Computers and Biomedical Research, 2000, 33(1): 11–22 DOI:10.1006/cbmr.1999.1527
Wijewickrema S, Copson B, Zhou Y, Ma X J, Briggs R, Bailey J, Kennedy G, O'Leary S. Design and evaluation of a virtual reality simulation module for training advanced temporal bone surgery. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). Thessaloniki, Greece, IEEE, 2017, 7–12 DOI:10.1109/cbms.2017.10
Gupta A, Cecil J, Pirela-Cruz M, Ramanathan P. A virtual reality enhanced cyber-human framework for orthopedic surgical training. IEEE Systems Journal, 2019, 13(3): 3501–3512 DOI:10.1109/jsyst.2019.2896061
Anderson J H, Brody W, Kriz C J, Wang Y P, Raghavan R, Viswanathan R. Da vinci: a vascular catheterization and interventional radiology-based training and patient pretreatment planning simulator. Journal of Vascular and Interventional Radiology, 1996, 7(1): 373 DOI:10.1016/s1051-0443(96)70159-8
Wang Y P, Chui C, Lim H, Cai Y Y, Mak K. Real-time interactive simulator for percutaneous coronary revascularization procedures. Computer Aided Surgery, 1998, 3(5): 211–227 DOI:10.3109/10929089809149843
Dawson S L, Cotin S, Meglan D, Shaffer D W, Ferrell M A. Designing a computer-based simulator for interventional cardiology training. Catheterization and Cardiovascular Interventions, 2000, 51(4): 522–527 DOI:10.1002/1522-726x(200012)51
Duriez C, Cotin S, Lenoir J, Neumann P. New approaches to catheter navigation for interventional radiology simulation. Computer Aided Surgery, 2006, 11(6): 300–308 DOI:10.3109/10929080601090623
Cai Y Y, Chui C, Ye X Z, Wang Y P, Anderson J H. VR simulated training for less invasive vascular intervention. Computers & Graphics, 2003, 27(2): 215–221 DOI:10.1016/s0097-8493(02)00278-9
Wang F, Duratti L, Samur E, Spaelter U, Bleuler H. A computer-based real-time simulation of interventional radiology. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, France, IEEE, 2007, 1742–1745 DOI:10.1109/iembs.2007.4352647
Lenoir J, Cotin S, Duriez C, Neumann P. Interactive physically-based simulation of catheter and guidewire. Computers & Graphics, 2006, 30(3): 416–422 DOI:10.1016/j.cag.2006.02.013
Luboz V, Zhang Y, Johnson S, Song Y, Kilkenny C, Hunt C, Woolnough H, Guediri S, Zhai J, Odetoyinbo T, Littler P, Fisher A, Hughes C, Chalmers N, Kessel D, Clough P J, Ward J, Phillips R, Gould D. ImaGiNe Seldinger: First simulator for Seldinger technique and angiography training. Computer Methods and Programs in Biomedicine, 2013, 111(2): 419–434 DOI:10.1016/j.cmpb.2013.05.014
Wang H Y, Wu J H, Wei M Q, Ma X. A robust and fast approach to simulating the behavior of guidewire in vascular interventional radiology. Computerized Medical Imaging and Graphics, 2015, 40: 160–169 DOI:10.1016/j.compmedimag.2014.10.006
Wang H Y, Wu J H, Cai Y Y. An adaptive deviation-feedback approach for simulating multiple devices interaction in virtual interventional radiology. Computer-Aided Design, 2019, 117: 102738 DOI:10.1016/j.cad.2019.102738
Wang W W, Li S, Qin H, Hao A M. Novel, robust, and efficient guidewire modeling for PCI surgery simulator based on heterogeneous and integrated chain-mails. In: 2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics). Xi'an, China, IEEE, 2015, 105–112 DOI:10.1109/cadgraphics.2015.22
Hao A M, Cui J H, Li S, Zhao Q P. Personalized cardiovascular intervention simulation system. Virtual Reality & Intelligent Hardware, 2020, 2(2): 104–118 DOI:10.1016/j.vrih.2020.04.001
Guo S X, Cai X J, Zhao Y, Gao B F. A novel VR-based simulator for the interventional surgical catheter and guidewire cooperation. In: 2018 13th World Congress on Intelligent Control and Automation (WCICA). Changsha, China, IEEE, 2018, 21–25 DOI:10.1109/wcica.2018.8630397
Alderliesten T, Konings M K, Niessen W J. Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions. IEEE Transactions on Biomedical Engineering, 2007, 54(1): 29–38 DOI:10.1109/tbme.2006.886659
Mi S H, Hou Z G, Yang F, Xie X L, Bian G B. A collision response algorithm for 3D virtual reality minimally invasive surgery simulator. The 26th Chinese Control and Decision Conference (2014 CCDC), 2014, 4594–4599 DOI:10.1109/ccdc.2014.6852993
Mao Y R, Hou F, Li S, Hao A M, Ai M J, Qin H. Robust and high-fidelity guidewire simulation with applications in percutaneous coronary intervention system. VRST '13: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology. 2013, 27–30 DOI:10.1145/2503713.2503743
Kerrien E, Yureidini A, Dequidt J, Duriez C, Anxionnat R, Cotin S. Blood vessel modeling for interactive simulation of interventional neuroradiology procedures. Medical Image Analysis, 2017, 35: 685–698 DOI:10.1016/j.media.2016.10.003
Wang Y Z, Serracino-Inglott F, Yi X D, Yuan X F, Yang X J. Real-time simulation of catheterization in endovascular surgeries. Computer Animation and Virtual Worlds, 2016, 27(3/4): 185–194 DOI:10.1002/cav.1702
Bergou M, Wardetzky M, Robinson S, Audoly B, Grinspun E. Discrete elastic rods. ACM Transactions on Graphics, 2008, 27(3): 63
Sandgren T, Sonesson B, Ahlgren Å R, Länne T. The diameter of the common femoral artery in healthy human: Influence of sex, age, and body size. Journal of Vascular Surgery, 1999, 29(3): 503–510 DOI:10.1016/s0741-5214(99)70279-x
Schröder J. The mechanical properties of guidewires. Part I: Stiffness and torsional strength. CardioVascular and Interventional Radiology, 1993, 16(1): 43–46 DOI:10.1007/bf02603036