Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(4): 302-314

Published Date:2021-8-20 DOI: 10.1016/j.vrih.2021.08.004

A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction


Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that can cause severe heart problems. Catheter ablation is one of the most ideal procedures for the treatment of AF. Physicians qualified to perform this procedure need to be highly skilled in manipulating the relevant surgical devices. This study proposes an interactive surgical simulator with high fidelity to facilitate efficient training and low-cost medical education.
We used a shared centerline model to simulate the interaction between multiple surgical devices. An improved adaptive deviation-feedback approach is proposed to accelerate the convergence of each iteration. The periodical beating of the human heart was also simulated in real time using the position-based dynamics (PBD) framework to achieve higher fidelity. We then present a novel method for handling the interaction between the devices and the beating heart mesh model. Experiments were conducted in a homemade simulator prototype to evaluate the robustness, performance, and flexibility of the proposed method. Preliminary evaluation of the simulator was performed by medical students, residents, and surgeons.
The interaction between surgical devices, static vascular meshes, and beating heart mesh was stably simulated in a frame rate suitable for interaction.
Our simulator is capable of simulating the procedure of catheter ablation with high fidelity and provides immersive visual experiences and haptic feedback.


Virtual reality ; Interventional radiology ; Surgical skills training ; Surgery simulator ; Catheter ablation

Cite this article

Haoyu WANG, Jianhuang WU. A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction. Virtual Reality & Intelligent Hardware, 2021, 3(4): 302-314 DOI:10.1016/j.vrih.2021.08.004


1. Mitchell E L, Sheahan M G, Schwiesow M. Simulation in vascular surgery. In: Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties. Cham: Springer International Publishing, 2019, 327–347. DOI:10.1007/978-3-319-98276-2_26

2. Gallagher A G, Cates C U. Virtual reality training for the operating room and cardiac catheterisation laboratory. The Lancet, 2004, 364(9444): 1538–1540 DOI:10.1016/s0140-6736(04)17278-4

3. Dawson D L, Meyer J, Lee E S, Pevec W C. Training with simulation improves residents' endovascular procedure skills. Journal of Vascular Surgery, 2007, 45(1): 149–154 DOI:10.1016/j.jvs.2006.09.003

4. Bagai A, O'Brien S, Al Lawati H, Goyal P, Ball W, Grantcharov T, Fam N. Mentored simulation training improves procedural skills in cardiac catheterization. Circulation: Cardiovascular Interventions, 2012, 5(5): 672–679 DOI:10.1161/circinterventions.112.970772

5. Badash I, Burtt K, Solorzano C A, Carey J N. Innovations in surgery simulation: a review of past, current and future techniques. Annals of Translational Medicine, 2016, 4(23): 453 DOI:10.21037/atm.2016.12.24

6. Iwata N, Fujiwara M, Kodera Y, Tanaka C, Ohashi N, Nakayama G, Koike M, Nakao A. Construct validity of the LapVR virtual-reality surgical simulator. Surgical Endoscopy, 2011, 25(2): 423–428 DOI:10.1007/s00464-010-1184-x

7. Fucentese S F, Rahm S, Wieser K, Spillmann J, Harders M, Koch P P. Evaluation of a virtual-reality-based simulator using passive haptic feedback for knee arthroscopy. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23(4): 1077–1085 DOI:10.1007/s00167-014-2888-6

8. Yamaguchi S, Konishi K, Yasunaga T, Yoshida D, Kinjo N, Kobayashi K, Ieiri S, Okazaki K, Nakashima H, Tanoue K, Maehara Y, Hashizume M. Construct validity for eye-hand coordination skill on a virtual reality laparoscopic surgical simulator. Surgical Endoscopy, 2007, 21(12): 2253–2257 DOI:10.1007/s00464-007-9362-1

9. Rahm S, Germann M, Hingsammer A, Wieser K, Gerber C. Validation of a virtual reality-based simulator for shoulder arthroscopy. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24(5): 1730–1737 DOI:10.1007/s00167-016-4022-4

10. Weidenbach M, Wick C, Pieper S, Quast K J, Fox T, Grunst G, Redel D A. Augmented reality simulator for training in two-dimensional echocardiography. Computers and Biomedical Research, 2000, 33(1): 11–22 DOI:10.1006/cbmr.1999.1527

11. Wijewickrema S, Copson B, Zhou Y, Ma X J, Briggs R, Bailey J, Kennedy G, O'Leary S. Design and evaluation of a virtual reality simulation module for training advanced temporal bone surgery. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). Thessaloniki, Greece, IEEE, 2017, 7–12 DOI:10.1109/cbms.2017.10

12. Gupta A, Cecil J, Pirela-Cruz M, Ramanathan P. A virtual reality enhanced cyber-human framework for orthopedic surgical training. IEEE Systems Journal, 2019, 13(3): 3501–3512 DOI:10.1109/jsyst.2019.2896061

13. Anderson J H, Brody W, Kriz C J, Wang Y P, Raghavan R, Viswanathan R. Da vinci: a vascular catheterization and interventional radiology-based training and patient pretreatment planning simulator. Journal of Vascular and Interventional Radiology, 1996, 7(1): 373 DOI:10.1016/s1051-0443(96)70159-8

14. Wang Y P, Chui C, Lim H, Cai Y Y, Mak K. Real-time interactive simulator for percutaneous coronary revascularization procedures. Computer Aided Surgery, 1998, 3(5): 211–227 DOI:10.3109/10929089809149843

15. Dawson S L, Cotin S, Meglan D, Shaffer D W, Ferrell M A. Designing a computer-based simulator for interventional cardiology training. Catheterization and Cardiovascular Interventions, 2000, 51(4): 522–527 DOI:10.1002/1522-726x(200012)51

16. Duriez C, Cotin S, Lenoir J, Neumann P. New approaches to catheter navigation for interventional radiology simulation. Computer Aided Surgery, 2006, 11(6): 300–308 DOI:10.3109/10929080601090623

17. Cai Y Y, Chui C, Ye X Z, Wang Y P, Anderson J H. VR simulated training for less invasive vascular intervention. Computers & Graphics, 2003, 27(2): 215–221 DOI:10.1016/s0097-8493(02)00278-9

18. Wang F, Duratti L, Samur E, Spaelter U, Bleuler H. A computer-based real-time simulation of interventional radiology. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, France, IEEE, 2007, 1742–1745 DOI:10.1109/iembs.2007.4352647

19. Lenoir J, Cotin S, Duriez C, Neumann P. Interactive physically-based simulation of catheter and guidewire. Computers & Graphics, 2006, 30(3): 416–422 DOI:10.1016/j.cag.2006.02.013

20. Luboz V, Zhang Y, Johnson S, Song Y, Kilkenny C, Hunt C, Woolnough H, Guediri S, Zhai J, Odetoyinbo T, Littler P, Fisher A, Hughes C, Chalmers N, Kessel D, Clough P J, Ward J, Phillips R, Gould D. ImaGiNe Seldinger: First simulator for Seldinger technique and angiography training. Computer Methods and Programs in Biomedicine, 2013, 111(2): 419–434 DOI:10.1016/j.cmpb.2013.05.014

21. Wang H Y, Wu J H, Wei M Q, Ma X. A robust and fast approach to simulating the behavior of guidewire in vascular interventional radiology. Computerized Medical Imaging and Graphics, 2015, 40: 160–169 DOI:10.1016/j.compmedimag.2014.10.006

22. Wang H Y, Wu J H, Cai Y Y. An adaptive deviation-feedback approach for simulating multiple devices interaction in virtual interventional radiology. Computer-Aided Design, 2019, 117: 102738 DOI:10.1016/j.cad.2019.102738

23. Wang W W, Li S, Qin H, Hao A M. Novel, robust, and efficient guidewire modeling for PCI surgery simulator based on heterogeneous and integrated chain-mails. In: 2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics). Xi'an, China, IEEE, 2015, 105–112 DOI:10.1109/cadgraphics.2015.22

24. Hao A M, Cui J H, Li S, Zhao Q P. Personalized cardiovascular intervention simulation system. Virtual Reality & Intelligent Hardware, 2020, 2(2): 104–118 DOI:10.1016/j.vrih.2020.04.001

25. Guo S X, Cai X J, Zhao Y, Gao B F. A novel VR-based simulator for the interventional surgical catheter and guidewire cooperation. In: 2018 13th World Congress on Intelligent Control and Automation (WCICA). Changsha, China, IEEE, 2018, 21–25 DOI:10.1109/wcica.2018.8630397

26. Alderliesten T, Konings M K, Niessen W J. Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions. IEEE Transactions on Biomedical Engineering, 2007, 54(1): 29–38 DOI:10.1109/tbme.2006.886659

27. Mi S H, Hou Z G, Yang F, Xie X L, Bian G B. A collision response algorithm for 3D virtual reality minimally invasive surgery simulator. The 26th Chinese Control and Decision Conference (2014 CCDC), 2014, 4594–4599 DOI:10.1109/ccdc.2014.6852993

28. Mao Y R, Hou F, Li S, Hao A M, Ai M J, Qin H. Robust and high-fidelity guidewire simulation with applications in percutaneous coronary intervention system. VRST '13: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology. 2013, 27–30 DOI:10.1145/2503713.2503743

29. Kerrien E, Yureidini A, Dequidt J, Duriez C, Anxionnat R, Cotin S. Blood vessel modeling for interactive simulation of interventional neuroradiology procedures. Medical Image Analysis, 2017, 35: 685–698 DOI:10.1016/j.media.2016.10.003

30. Wang Y Z, Serracino-Inglott F, Yi X D, Yuan X F, Yang X J. Real-time simulation of catheterization in endovascular surgeries. Computer Animation and Virtual Worlds, 2016, 27(3/4): 185–194 DOI:10.1002/cav.1702

31. Bergou M, Wardetzky M, Robinson S, Audoly B, Grinspun E. Discrete elastic rods. ACM Transactions on Graphics, 2008, 27(3): 63

32. Sandgren T, Sonesson B, Ahlgren Å R, Länne T. The diameter of the common femoral artery in healthy human: Influence of sex, age, and body size. Journal of Vascular Surgery, 1999, 29(3): 503–510 DOI:10.1016/s0741-5214(99)70279-x

33. Schröder J. The mechanical properties of guidewires. Part I: Stiffness and torsional strength. CardioVascular and Interventional Radiology, 1993, 16(1): 43–46 DOI:10.1007/bf02603036


1. Yang LI, Dong WU, Jin HUANG, Feng TIAN, Hong'an WANG, Guozhong DAI, Influence of multi-modality on moving target selection in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(3): 303-315

2. Yang LI, Jin HUANG, Feng TIAN, Hong-An WANG, Guo-Zhong DAI, Gesture interaction in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(1): 84-112

3. Athirah SYAMIMI, Yiwei GONG, Ryan LIEW, VR industrial applicationsA singapore perspective Virtual Reality & Intelligent Hardware 2020, 2(5): 409-420

4. Jie GUO, Dongdong WENG, Yue LIU, Qiyong CHEN, Yongtian WANG, Analysis of teenagers' preferences and concerns regarding HMDs in education Virtual Reality & Intelligent Hardware 2021, 3(5): 369-382

5. Susu HUANG, Daqing QI, Jiabin YUAN, Huawei TU, Review of studies on target acquisition in virtual reality based on the crossing paradigm Virtual Reality & Intelligent Hardware 2019, 1(3): 251-264

6. Yukang YAN, Xin YI, Chun YU, Yuanchun SHI, Gesture-based target acquisition in virtual and augmented reality Virtual Reality & Intelligent Hardware 2019, 1(3): 276-289

7. Yuan GAO, Le XIE, A review on the application of augmented reality in craniomaxillofacial surgery Virtual Reality & Intelligent Hardware 2019, 1(1): 113-120

8. Yuan CHANG, Guo-Ping WANG, A review on image-based rendering Virtual Reality & Intelligent Hardware 2019, 1(1): 39-54

9. Shiguang QIU, Shuntao LIU, Deshuai KONG, Qichang HE, Three-dimensional virtual-real mapping of aircraft autom-atic spray operation and online simulation monitoring Virtual Reality & Intelligent Hardware 2019, 1(6): 611-621

10. Xu PENG, Zhenyu GAO, Yitong DING, Dongfeng ZHAO, Xiaoyu CHI, Study of ghost image suppression in polarized catadioptric virtual reality optical systems Virtual Reality & Intelligent Hardware 2020, 2(1): 70-78

11. Zhiming HU, Sheng LI, Meng GAI, Temporal continuity of visual attention for future gaze prediction in immersive virtual reality Virtual Reality & Intelligent Hardware 2020, 2(2): 142-152

12. Lihui HUANG, Siti Faatihah Binte Mohd TAIB, Ryan Aung BA, Zhe An GOH, Mengshan XU, Virtual reality research and development in NTU Virtual Reality & Intelligent Hardware 2020, 2(5): 394-408

13. Stéphanie PHILIPPE, Alexis D. SOUCHET, Petros LAMERAS, Panagiotis PETRIDIS, Julien CAPORAL, Gildas COLDEBOEUF, Hadrien DUZAN, Multimodal teaching, learning and training in virtual reality: a review and case study Virtual Reality & Intelligent Hardware 2020, 2(5): 421-442

14. Jia Ming LEE, Xinxing XIA, Clemen OW, Felix CHUA, Yunqing GUAN, VEGO: A novel design towards customizable and adjustable head-mounted display for VR Virtual Reality & Intelligent Hardware 2020, 2(5): 443-453

15. Jingcheng QIAN, Yancong MA, Zhigeng PAN, Xubo YANG, Effects of Virtual-real fusion on immersion, presence, and learning performance in laboratory education Virtual Reality & Intelligent Hardware 2020, 2(6): 569-584

16. Hengwei XU, Siru LI, Wenpeng SONG, Jiajun SUN, Xinli WU, Xiaoqi WANG, Wenzhen YANG, Zhigeng PAN, Abdennour EI RHALIBI, Thermal perception method of virtual chemistry experiments Virtual Reality & Intelligent Hardware 2020, 2(4): 305-315

17. TJ MATTHEWS, Feng TIAN, Tom DOLBY, Interaction design for paediatric emergency VR training Virtual Reality & Intelligent Hardware 2020, 2(4): 330-344

18. Hongxin ZHANG, Jin ZHANG, Xue YIN, Kan ZHOU, Zhigeng PAN, Abdennour EI RHALIBI, Cloud-to-end rendering and storage management for virtual reality in experimental education Virtual Reality & Intelligent Hardware 2020, 2(4): 368-380

19. Xiang ZHOU, Liyu TANG, Ding LIN, Wei HAN, Virtual & augmented reality for biological microscope in experiment education Virtual Reality & Intelligent Hardware 2020, 2(4): 316-329

20. Na ZHANG, Liwen TAN, Fengying LI, Bing HAN, Yifa XU, Development and application of digital assistive teaching system for anatomy Virtual Reality & Intelligent Hardware 2021, 3(4): 315-335

21. Daniel VANKOV, David JANKOVSZKY, Effects of using headset-delivered virtual reality in road safety research: A systematic review of empirical studies Virtual Reality & Intelligent Hardware 2021, 3(5): 351-368

22. Dangxiao WANG, Yuan GUO, Shiyi LIU, Yuru ZHANG, Weiliang XU, Jing XIAO, Haptic display for virtual reality: progress and challenges Virtual Reality & Intelligent Hardware 2019, 1(2): 136-162

23. Aiguo SONG, Liyue FU, Multi-dimensional force sensor for haptic interaction: a review Virtual Reality & Intelligent Hardware 2019, 1(2): 121-135

24. Wenmin ZHU, Xiumin FAN, Yanxin ZHANG, Applications and research trends of digital human models in the manufacturing industry Virtual Reality & Intelligent Hardware 2019, 1(6): 558-579

25. Mohammad Mahmudul ALAM, S. M. Mahbubur RAHMAN, Affine transformation of virtual 3D object using 2D localization of fingertips Virtual Reality & Intelligent Hardware 2020, 2(6): 534-555

26. Yuan WEI, Dongdong GUAN, Qiuchen WANG, Xiangxian LI, Yulong BIAN, Pu QIN, Yanning XU, Chenglei YANG, Virtual fire drill system supporting co-located collaboration Virtual Reality & Intelligent Hardware 2019, 1(3): 290-302