Effects of virtual environment and self-representations on perception and physical performance in redirected jumping
1. State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China
2. Peng Cheng Laboratory, Shenzhen 518055, China
3. Universit ̈at Hamburg, Hamburg 21071, Germany
Abstract
Keywords: Virtual reality ; Virtual locomotion ; Redirected jumping
Content







Measure | Effect | df | F |
|
p |
---|---|---|---|---|---|
IPQ | VE | 1, 14 | 28.92*** | 0.674 | < 0.0001 |
SR | 2, 28 | 8.79** | 0.386 | 0.001 | |
VE |
1.32, 18.43 | 1.31 | 0.085 | 0.28 | |
GFP | VE | 1, 14 | 18.65*** | 0.57 | < 0.001 |
SR | 1.27, 17.75 | 26.34*** | 0.653 | < 0.0001 | |
VE |
1.34, 18.81 | 0.31 | 0.022 | 0.649 | |
IMI-T | VE | 1, 14 | 10.90** | 0.483 | 0.005 |
SR | 1.44, 20.11 | 1.37 | 0.089 | 0.269 | |
VE |
2, 28 | 1.92 | 0.121 | 0.165 | |
IMI-E | VE | 1, 14 | 25.34*** | 0.644 | < 0.0001 |
SR | 2, 28 | 12.54*** | 0.472 | < 0.0001 | |
VE |
1.23, 17.23 | 0.87 | 0.058 | 0.388 |
Conditions | Before | After |
---|---|---|
LowVisuals & InvisibleBody | 5.735 ± 1.309 | 16.955 ± 3.460 |
LowVisuals & Shoes | 8.727 ± 1.954 | 15.209 ± 2.976 |
LowVisuals & HumanAvatar | 4.987 ± 1.920 | 11.719 ± 2.124 |
HighVisuals & InvisibleBody | 6.732 ± 2.481 | 14.711 ± 4.971 |
HighVisuals & Shoes | 6.981 ± 2.472 | 12.716 ± 3.178 |
HighVisuals & HumanAvatar | 7.231 ± 2.015 | 12.467 ± 3.002 |
Reference
Steinicke F, Visell Y, Campos J, Lécuyer A. Human walking in virtual environments. New York: Springer, 2013
Interrante V, Ries B, Anderson L. Seven league boots: a new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In: 2007 IEEE Symposium on 3D User Interfaces. Charlotte, NC, USA, IEEE, 2007 DOI:10.1109/3dui.2007.340791
Slater M, Steed A, Usoh M. The virtual treadmill: A naturalistic metaphor for navigation in immersive virtual environments. In: Eurographics. Vienna: Springer Vienna, 1995, 135–148 DOI:10.1007/978-3-7091-9433-1_12
Nilsson N C, Serafin S, Laursen M H, Pedersen K S, Sikström E, Nordahl R. Tapping-In-Place: Increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI). Orlando, FL, USA, IEEE, 2013, 31–38 DOI:10.1109/3dui.2013.6550193
Coomer N, Bullard S, Clinton W, Williams-Sanders B. Evaluating the effects of four VR locomotion methods: joystick, arm-cycling, point-tugging, and teleporting. In: Proceedings of the 15th ACM Symposium on Applied Perception. 2018, 1–8 DOI:10.1145/3225153.3225175
Langbehn E, Lubos P, Steinicke F. Evaluation of locomotion techniques for room-scale VR: joystick, teleportation, and redirected walking. In: Proceedings of the Virtual Reality International Conference―Laval Virtual. Laval, France, New York, NY, USA, ACM, 2018, 1–9 DOI:10.1145/3234253.3234291
Bozgeyikli E, Raij A, Katkoori S, Dubey R. Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play. Austin, Texas, USA, New York, NY, USA, ACM, 2016, 205–216 DOI:10.1145/2967934.2968105
Razzaque S, Kohn Z, Whitton M C. Redirected walking. Chapel Hill: University of North Carolina at Chapel Hill. 2005, 4914-4914
Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Estimation of detection thresholds for redirected walking techniques. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(1): 17–27 DOI:10.1109/tvcg.2009.62
Sarupuri B, Hoermann S, Steinicke F, Lindeman R W. Triggerwalking: a biomechanically-inspired locomotion user interface for efficient realistic virtual walking. In: Proceedings of the 5th Symposium on Spatial User Interaction. Brighton, United Kingdom, New York, NY, USA, ACM, 2017, 138–147 DOI:10.1145/3131277.3132177
Souman J L, Giordano P R, Schwaiger M, Frissen I. CyberWalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Transactions on Applied Perception (TAP), 2008, 8(4): 1–22
Pyo S H, Lee H S, Phu B M, Park S J, Yoon J W. Development of an fast-omnidirectional treadmill (f-odt) for immersive locomotion interface. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, 760–766
Wang Z Y, Wei H K, Zhang K J, Xie L P. Real walking in place: HEX-CORE-PROTOTYPE omnidirectional treadmill. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 382–387 DOI:10.1109/vr46266.2020.00058
Nilsson N C, Peck T, Bruder G, Hodgson E, Serafin S, Whitton M, Steinicke F, Rosenberg E S. 15 years of research on redirected walking in immersive virtual environments. IEEE Computer Graphics and Applications, 2018, 38(2): 44–56 DOI:10.1109/mcg.2018.111125628
Hayashi D, Fujita K, Takashima K, Lindeman R W, Kitamura Y. Redirected jumping: imperceptibly manipulating jump motions in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 386–394 DOI:10.1109/vr.2019.8797989
Kruse L, Langbehn E, Steinicke F. I can see on my feet while walking: Sensitivity to translation gains with visible feet. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Tuebingen/Reutlingen, Germany, IEEE, 2018, 305–312 DOI:10.1109/VR.2018.8446216
Usoh M, Arthur K, Whitton MC, Bastos R, Steed A, Slater M, BrooksJr , F. P. Walking##大于## walking-in-place##大于## flying, in virtual environments. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM, 1999, 359–364 DOI:10.1145/311535.311589
Williams B, Narasimham G, McNamara T P, Carr T H, Rieser J J, Bodenheimer B. Updating orientation in large virtual environments using scaled translational gain. In: Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization. ACM, 2006, 21–28 DOI:10.1145/1140491.1140495
Sun Q, Patney A, Wei L Y, Shapira O, Lu J, Asente P, Zhu S, McGuire M, Luebke D, Kaufman A. Towards virtual reality infinite walking: dynamic saccadic redirection. ACM Transactions on Graphics (TOG), 2018, 37(4): 1–13 DOI:10.1145/3197517.3201294
Bachmann E R, Hodgson E, Hoffbauer C, Messinger J. Multi-user redirected walking and resetting using artificial potential fields. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(5): 2022–2031 DOI:10.1109/tvcg.2019.2898764
Dong T, Chen X, Song Y, Ying W, Fan J. Dynamic artificial potential fields for multi-user redirected walking. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2020,146–154 DOI:10.1109/VR46266.2020.00033
Dong Z C, Fu X M, Zhang C, Wu K, Liu L G. Smooth assembled mappings for large-scale real walking. ACM Transactions on Graphics, 2017, 36(6): 1–13 DOI:10.1145/3130800.3130893
Dong ZC, Fu X M, Yang Z, Liu L. Redirected smooth mappings for multiuser real walking in virtual reality. ACM Transactions on Graphics (TOG), 2019, 38(5):1–17 DOI:10.1145/3345554
Suma E A, Clark S, Krum D, Finkelstein S, Bolas M, Warte Z. Leveraging change blindness for redirection in virtual environments. In: 2011 IEEE Virtual Reality Conference. Singapore, IEEE, 2011, 159–166 DOI:10.1109/vr.2011.5759455
Suma E A, Lipps Z, Finkelstein S, Krum D M, Bolas M. Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(4): 555–564 DOI:10.1109/tvcg.2012.47
Sun Q, Wei L Y, Kaufman A. Mapping virtual and physical reality. ACM Transactions on Graphics, 2016, 35(4): 1–12 DOI:10.1145/2897824.2925883
Williams N L, Peck T C. Estimation of rotation gain thresholds considering FOV, gender, and distractors. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(11): 3158–3168 DOI:10.1109/tvcg.2019.2932213
Matsumoto K, Langbehn E, Narumi T, Steinicke F. Detection thresholds for vertical gains in VR and drone-based telepresence systems. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 101–107 DOI:10.1109/vr46266.2020.00028
Lee D Y, Cho Y H, Lee I K. Real-time optimal planning for redirected walking using deep q-learning. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 63–71 DOI:10.1109/VR.2019.8798121
Lee D Y, Cho Y H, Min D H, Lee I K. Optimal planning for redirected walking based on reinforcement learning in multi-user environment with irregularly shaped physical space. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 155–163 DOI:10.1109/VR46266.2020.00034
Strauss R R, Ramanujan R, Becker A, Peck T C. A steering algorithm for redirected walking using reinforcement learning. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(5): 1955–1963 DOI:10.1109/tvcg.2020.2973060
Langbehn E, Lubos P, Bruder G, Steinicke F. Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4): 1389–1398 DOI:10.1109/tvcg.2017.2657220
Reimer D, Langbehn E, Kaufmann H, Scherzer D. The influence of full-body representation on translation and curvature gain. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). Atlanta, GA, USA, IEEE, 2020, 154–159 DOI:10.1109/VRW50115.2020.00032
Bolte B, Steinicke F, Bruder G. The jumper metaphor: an effective navigation technique for immersive display setups. In: Proceedings of Virtual Reality International Conference. 2011, 2, 1
Yoshida N, Ueno K, Naka Y, Yonezawa T. Virtual ski jump: illusion of slide down the slope and gliding. In: SIGGRAPH ASIA 2016 Posters. 2016 DOI:10.1145/3005274.3005282
Kim M, Cho S, Tran T Q, Kim S P, Kwon O, Han J J. Scaled jump in gravity-reduced virtual environments. 2017, 23(4): 1360–1368 DOI:10.1109/TVCG.2017.2657139
Kang HY, Lee G, Kang DS, Kwon O, Cho JY, Choi HJ, Han JH. Jumping Further: Forward Jumps in a Gravity-reduced immersive virtual environment. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 699–707 DOI:10.1109/VR.2019.8798251
Sasaki T, Liu K-H, Hasegawa T, Hiyama A, Inami M. Virtual super-leaping: Immersive extreme jumping in VR. In: Proceedings of the 10th Augmented Human International Conference. ACM, 2019, 1–8 DOI:10.1145/3311823.3311861
Jung S, Borst C W, Hoermann S, Lindeman R W. Redirected jumping: Perceptual detection rates for curvature gains. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. ACM, 2019, 1085–1092 DOI:10.1145/3332165.3347868
Wolf D, Rogers K, Kunder C, Rukzio E. Jumpvr: Jump-based locomotion augmentation for virtual reality. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. New York, NY, United States, ACM, 2020, 1–12 DOI:10.1145/3313831.3376243
Witmer B G, Singer M J. Measuring presence in virtual environments: a presence questionnaire. Presence, 1998, 7(3): 225–240 DOI:10.1162/105474698565686
Regenbrecht H T, Schubert T W, Friedmann F. Measuring the sense of presence and its relations to fear of heights in virtual environments. International Journal of Human-Computer Interaction, 1998, 10(3): 233–249 DOI:10.1207/s15327590ijhc1003_2
Sanchez-Vives M V, Slater M. From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 2005, 6(4): 332–339 DOI:10.1038/nrn1651
Usoh M, Catena E, Arman S, Slater M J P T, Environments V. Using presence questionnaires in reality. 2000, 9(5): 497-503 DOI:10.1162/105474600566989
Schubert T, Friedmann F, Regenbrecht H. The experience of presence: factor analytic insights. Presence, 2001, 10(3): 266–281 DOI:10.1162/105474601300343603
Steed A, Pan Y, Zisch F, Steptoe W. The impact of a self-avatar on cognitive load in immersive virtual reality. In: 2016 IEEE virtual reality (VR). Greenville, SC, USA, IEEE, 2016, 67–76 DOI:10.1109/VR.2016.7504689
Jung S, Wisniewski P J, Hughes C E. In limbo: The effect of gradual visual transition between real and virtual on virtual body ownership illusion and presence. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Tuebingen/Reutlingen, Germany, IEEE, 2018, 267–272 DOI:10.1109/VR.2018.8447562
Bodenheimer B, Creem-Regehr S, Stefanucci J, Shemetova E, Thompson W B. Prism aftereffects for throwing with a self-avatar in an immersive virtual environment. In: 2017 IEEE Virtual Reality (VR). IEEE, 2017, 141–147 DOI:10.1109/VR.2017.7892241
Gonzalez-Franco M, Peck T C. Avatar embodiment. towards a standardized questionnaire. Frontiers in Robotics and AI, 2018, 5, 74 DOI:10.3389/frobt.2018.00074
Murphy D. Bodiless embodiment: a descriptive survey of avatar bodily coherence in first-wave consumer VR applications. In: 2017 IEEE Virtual Reality (VR). Los Angeles, CA, USA, IEEE, 2017, 265–266 DOI:10.1109/vr.2017.7892278
Murray C D, Sixsmith J. The corporeal body in virtual reality. Ethos, 1999, 27(3): 315–343 DOI:10.1525/eth.1999.27.3.315
Blanke O, Metzinger T. Full-body illusions and minimal phenomenal selfhood. Trends in Cognitive Sciences, 2009, 13(1), 7–13 DOI:10.1016/j.tics.2008.10.003
Maselli A, Slater M. The building blocks of the full body ownership illusion. Frontiers in Human Neuroscience, 2013, 7, 83 DOI:10.3389/fnhum.2013.00083
Peck T C, Tutar A. The impact of a self-avatar, hand collocation, and hand proximity on embodiment and stroop interference. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(5), 1964–1971 DOI:10.1109/tvcg.2020.2973061
Fribourg R, Argelaguet F, Lécuyer A, Hoyet L. Avatar and sense of embodiment: studying the relative preference between appearance, control and point of view. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(5): 2062–2072 DOI:10.1109/tvcg.2020.2973077
Karvonen J, Vuorimaa T. Heart rate and exercise intensity during sports activities. Sports Medicine, 1988, 5(5): 303–312 DOI:10.2165/00007256-198805050-00002
Schubert T, Friedmann F, Regenbrecht H. Igroup presence questionnaire (IPQ) overview. 2018
Ryan R M. Control and information in the intrapersonal sphere: an extension of cognitive evaluation theory. Journal of Personality and Social Psychology, 1982, 43(3): 450–461 DOI:10.1037/0022-3514.43.3.450
Kennedy R S, Lane N E, Berbaum K S, Lilienthal M G. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 1993, 3(3): 203–220 DOI:10.1207/s15327108ijap0303_3