2021, 3(3): 248-260
Published Date:2021-6-20 DOI: 10.1016/j.vrih.2021.05.004
Teaching Chinese sign language with a smartphone
Abstract
Keyword
Cite this article
References
1.
Gong C, Bin C, Lei Z. Study on the prevention and strategy of disability in China. Procedia-Social and Behavioral Sciences, 2010, 2(5): 6906–6913 DOI:10.1016/j.sbspro.2010.05.041
2.
Lu W. Research and suggestions on sign language teaching in Chinese universities. Journal of Changchun University, 2014
3.
Leo M, Medioni G, Trivedi M, Kanade T, Farinella G M. Computer vision for assistive technologies. Computer Vision and Image Understanding, 2017, 154: 1–15 DOI:10.1016/j.cviu.2016.09.001
4.
Lee Y H, Medioni G. RGB-D camera based wearable navigation system for the visually impaired. Computer Vision and Image Understanding, 2016, 149: 3–20 DOI:10.1016/j.cviu.2016.03.019
5.
Kayukawa S, Higuchi K, Guerreiro J, Morishima S, Sato Y, Kitani K, Asakawa C. BBeep: a sonic collision avoidance system for blind travellers and nearby pedestrians. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. Glasgow Scotland Uk, New York, NY, USA, ACM, 2019, 1–12 DOI:10.1145/3290605.3300282
6.
Zeng J H, Sun Y R, Wang F. A natural hand gesture system for intelligent human-computer interaction and medical assistance. In: 2012 Third Global Congress on Intelligent Systems. Wuhan, China, IEEE, 2012, 382–385 DOI:10.1109/gcis.2012.60
7.
Parmar P, Morris B T. Measuring the quality of exercises. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA, IEEE, 2016, 2241–2244 DOI:10.1109/embc.2016.7591175
8.
Feng W G, Liu R, Zhu M. Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera. Signal, Image and Video Processing, 2014, 8(6): 1129–1138 DOI:10.1007/s11760-014-0645-4
9.
Martinel N, Piciarelli C, Micheloni C. A supervised extreme learning committee for food recognition. Computer Vision and Image Understanding, 2016, 148: 67–86 DOI:10.1016/j.cviu.2016.01.012
10.
Zhang S. Design research in Kinect based sign-language teaching system. East China Normal University. 2014
11.
Juan-les-Pins, France, York New, Press ACM, 2002, 137–145 DOI:10.1145/641007.641035
12.
Phan H D, Ellis K, Dorin A. MIC, an interactive sign language teaching system. In: Proceedings of the 30th Australian Conference on Computer-Human Interaction. Melbourne Australia, New York, NY, USA, ACM, 2018, 544–547 DOI:10.1145/3292147.3292237
13.
IEEE transactions on pattern analysis and machine intelligence-cover. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 0_1–673 DOI:10.1109/tpami.2004.1273910
14.
Jiang X W, Satapathy S C, Yang L X, Wang S H, Zhang Y D. A survey on artificial intelligence in Chinese sign language recognition. Arabian Journal for Science and Engineering, 2020, 45(12): 9859–9894 DOI:10.1007/s13369-020-04758-2
15.
Pigou L, Dieleman S, Kindermans P J, Schrauwen B. Sign language recognition using convolutional neural networks. European Conference on Computer Vision. Springer, Cham, 2014, 572–578 DOI:10.1007/978-3-319-16178-5_40
16.
Köpüklü O, Köse N, Rigoll G. Motion fused frames: data level fusion strategy for hand gesture recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT, USA, IEEE, 2018, 2184–21848 DOI:10.1109/cvprw.2018.00284
17.
IEEE transactions on pattern analysis and machine intelligence information for authors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6): C3 DOI:10.1109/tpami.2015.2427753
18.
Li Y N, Miao Q G, Tian K, Fan Y Y, Xu X, Li R, Song J F. Large-scale gesture recognition with a fusion of RGB-D data based on the C3D model. In: 2016 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico, IEEE, 2016, 25–30 DOI:10.1109/icpr.2016.7899602
19.
Li Y N, Miao Q G, Tian K, Fan Y Y, Xu X, Li R, Song J F. Large-scale gesture recognition with a fusion of RGB-D data based on saliency theory and C3D model. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(10): 2956–2964 DOI:10.1109/tcsvt.2017.2749509
20.
Huang J, Zhou W G, Li H Q, Li W P. Attention-based 3D-CNNs for large-vocabulary sign language recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(9): 2822–2832 DOI:10.1109/tcsvt.2018.2870740
21.
Cate H, Dalvi F, Hussain Z. Sign language recognition using temporal classification. 2017
22.
Chai X J, Liu Z P, Yin F, Liu Z, Chen X L. Two streams recurrent neural networks for large-scale continuous gesture recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico, IEEE, 2016, 31–36 DOI:10.1109/icpr.2016.7899603
23.
Bantupalli K, Xie Y. American sign language recognition using deep learning and computer vision. In: 2018 IEEE International Conference on Big Data (Big Data). Seattle, WA, USA, IEEE, 2018, 4896–4899 DOI:10.1109/bigdata.2018.8622141
24.
Liao Y Q, Xiong P W, Min W D, Min W Q, Lu J H. Dynamic sign language recognition based on video sequence with BLSTM-3D residual networks. IEEE Access, 2019, 7: 38044–38054 DOI:10.1109/access.2019.2904749
25.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Basic Chinese Sign Language Gestures. China Standards Press, 2009
26.
Min Y, Chai X, Zhao L, Chen X. FlickerNet: Adaptive 3D gesture recognition from sparse point clouds. British Machine Vision Conference. 2019, 105
27.
Sun Y, Zheng L, Yang Y, Tian Q, Wang S. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). Proceedings of the European Conference on Computer Vision. 2018, 480–496 DOI:10.1007/978-3-030-01225-0_30
28.
SunY F, Zheng L, Yang Y, Tian Q, Wang S J. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). Computer Vision-ECCV 2018, 2018, 480–496 DOI:10.1007/978-3-030-01225-0_30
29.
de Smedt Q, Wannous H, -P Vandeborre J, Guerry J, le Saux B, Filliat D. 3D hand gesture recognition using a depth and skeletal dataset: SHREC'17 track. 3Dor '17: Proceedings of the Workshop on 3D Object Retrieval. 2017, 33–38 DOI:10.2312/3dor.20171049
30.
Min Y C, Zhang Y X, Chai X J, Chen X L. An efficient PointLSTM for point clouds based gesture recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, IEEE, 2020, 5760–5769 DOI:10.1109/cvpr42600.2020.00580
31.
De Smedt Q, Wannous H, Vandeborre J P. Skeleton-based dynamic hand gesture recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas, NV, USA, IEEE, 2016, 1206–1214 DOI:10.1109/cvprw.2016.153
32.
Hou J X, Wang G J, Chen X H, Xue J H, Zhu R, Yang H Z. Spatial-temporal attention res-TCN for skeleton-based dynamic hand gesture recognition. Computer Vision-ECCV 2018 Workshops, 2019 DOI:10.1007/978-3-030-11024-6_18
33.
Peng W, Hong X P, Chen H Y, Zhao G Y. Learning graph convolutional network for skeleton-based human action recognition by neural searching. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3): 2669–2676 DOI:10.1609/aaai.v34i03.5652
34.
Chen Y X, Zhao L, Peng X, Yuan J B, Metaxas D N. Construct dynamic graphs for hand gesture recognition via spatial-temporal attention. 2019
35.
Luo Y. Love Sign Language (Version 1.3.5), 2020
36.
Changsha Keenbow Information Technology Co., Ltd. 2020, Keenbow Sign Language (Version 1.4)
Media
Teaching Chinese sign language with a sma...