VEGO: A novel design towards customizable and adjustable head-mounted display for VR
1. Singapore Institute of Technology, 138683, Singapore
2. Shanghai University, Shanghai 200444, China
3. University of Glasgow, 567739, Singapore
4. DigiPen Institute, 139660, Singapore
Abstract
Keywords: Virtual reality ; Head mounted display ; Vergence accommodation conflict ; Inter-pupil distance
Content












Reference
Sutherland I E. A head-mounted three dimensional display. In: Fall Joint Computer Conference (Fall, part I). San Francisco, California, New York, ACM Press, 1968, 757–764 DOI:10.1145/1476589.1476686
Rheingold H. Virtual Reality. Summit Books, 1991 DOI:10.1080/00140139308967935
McMillan K, Flood K, Glaeser R. Virtual reality, augmented reality, mixed reality, and the marine conservation movement. Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, 27(S1): 162–168 DOI:10.1002/aqc.2820
Available from:https://www.theguardian.com/technology/2014/jul/22/facebook-oculus-rift-acquisition-virtual-reality
Psotka J. Immersive training systems: Virtual reality and education and training. Instructional Science, 1995, 23(5): 405–431 DOI:10.1007/bf00896880
Mazuryk T, Gervautz M. Virtual reality―history, applications, technology and future. 1999
Anthes C, García-Hernández R J, Wiedemann M, Kranzlmüller D. State of the art of virtual reality technology. In: 2016 IEEE Aerospace Conference. Big Sky, MT, USA, IEEE, 2016, 1–19 DOI:10.1109/aero.2016.7500674
Mujber T S, Szecsi T, Hashmi M S J. Virtual reality applications in manufacturing process simulation. Journal of Materials Processing Technology, 2004, 155/156: 1834–1838 DOI:10.1016/j.jmatprotec.2004.04.401
Alexander T, Westhoven M, Conradi J. Virtual environments for competency-oriented education and training. In: Advances in Human Factors, Business Management, Training and Education. Cham: Springer International Publishing, 2016: 23–29 DOI:10.1007/978-3-319-42070-7_3
Cai Y Y, Chia N K H, Thalmann D, Kee N K N, Zheng J M, Thalmann N M. Design and development of a virtual dolphinarium for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(2): 208–217 DOI:10.1109/tnsre.2013.2240700
Song H, Chen F Y, Peng Q J, Zhang J, Gu P H. Improvement of user experience using virtual reality in open-architecture product design. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(13): 2264–2275 DOI:10.1177/0954405417711736
Schmidt M, Beck D, Glaser N, Schmidt C. A prototype immersive, multi-user 3D virtual learning environment for individuals with autism to learn social and life skills: A virtuoso DBR update. In: Communications in Computer and Information Science. Cham: Springer International Publishing, 2017, 185–188 DOI:10.1007/978-3-319-60633-0_15
Gallagher A G, Ritter E M, Champion H, Higgins G, Fried M P, Moses G. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Annals of Surgery, 2005, 241: 364 DOI:10.1002/bjs.1800840237
Ba R K T A, Cai Y Y, Guan Y Q. Augmented reality simulation of cardiac circulation using APPLearn (heart). In: 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). Taichung, Taiwan, China, IEEE, 2018, 241–243 DOI:10.1109/aivr.2018.00055
Zyda M. From visual simulation to virtual reality to games. Computer, 2005, 38(9): 25–32 DOI:10.1109/mc.2005.297
Meldrum D, Glennon A, Herdman S, Murray D, Mcconn-Walsh R. Virtual reality rehabilitation of balance: assessment of the usability of the Nintendo Wii®Fit Plus. Disability and Rehabilitation: Assistive Technology, 2012, 7(3): 205–210 DOI:10.3109/17483107.2011.616922
Indhumathi C, Cai Y Y, Guan Y Q, Opas M. 3D boundary extraction of confocal cellular images using higher order statistics. Journal of Microscopy, 2009, 235(2): 209–220 DOI:10.1111/j.1365-2818.2009.03203.x
Freeman D, Reeve S, Robinson A, Ehlers A, Clark D, Spanlang B, Slater M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 2017, 47(14): 2393–2400 DOI:10.1017/s003329171700040x
Slater M, Sanchez-Vives M V. Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 2016, 3: 74 DOI:10.3389/frobt.2016.00074
Available from:https://www.oculus.com/rift-s/features/
Available from:https://www.oculus.com/quest/features/
Lambooij M, IJsselsteijn W, Fortuin M, Heynderickx I. Visual discomfort and visual fatigue of stereoscopic displays: a review. Journal of Imaging Science and Technology, 2009, 53(3): 030201 DOI:10.2352/j.imagingsci.technol.2009.53.3.030201
Hoffman D M, Girshick A R, Akeley K, Banks M S. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 2008, 8(3): 1–30 DOI:10.1167/8.3.33
Vienne C, Sorin L, Blondé L, Huynh-Thu Q, Mamassian P. Effect of the accommodation-vergence conflict on vergence eye movements. Vision Research, 2014, 100: 124–133 DOI:10.1016/j.visres.2014.04.017
Kooi F L, Toet A. Visual comfort of binocular and 3D displays. Displays, 2004, 25(2/3): 99–108 DOI:10.1016/j.displa.2004.07.004
Shibata T, Kim J, Hoffman D M, Banks M S. The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision, 2011, 11(8): 11 DOI:10.1167/11.8.11
Fuchs H, Bishop G. Research directions in virtual environments. Chapel Hill, NC, University of North Carolina at Chapel Hill. 1992
Konrad R, Padmanaban N, Molner K, Cooper E A Wetzstein G. Accommodation-invariant computational near-eye displays. ACM Transactions on Graphics, 2017, 36, 4 DOI:10.1145/3072959.3073594
Laffont P Y, Hasnain A. Adaptive dynamic refocusing: towards solving discomfort in virtual reality. In: ACM Siggraph 2017 Emerging Technologies. ACM, 2017, 1, 1–2 DOI:10.1145/3084822.3084839
Padmanaban N, Konrad R, Stramer T, Cooper E A, Wetzstein G. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays. PNAS, 2017, 114(9): 2183–2188 DOI:10.1007/978-3-642-04898-2_615
Konrad R, Angelopoulos A, Wetzstein G. Gaze-contingent ocular parallax rendering for virtual reality. In: ACM SIGGRAPH 2019 Talks. Los Angeles California, New York, NY, USA, ACM, 2019 DOI:10.1145/3306307.3328201
Available from:https://github.com/FaBoPlatform/FaBo9AXIS-MPU9250-Python
Available from:https://pi3d.github.io/html/ReadMe.html
Skillman T R, Gaunt P. Pi3d. 2020. Available from:https://github.com/tipam/pi3d
Available from:https://www.sketchup.com/
Neuhäuser M. Wilcoxon–Mann–Whitney Test. In: Lovric M. International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg, 2014 DOI:10.1007/978-3-642-04898-2_61