2020, 2(2): 87-103
Published Date:2020-4-20 DOI: 10.1016/j.vrih.2020.04.003
Intelligent virtualization of crane lifting using laser scanning technology
Abstract
Keyword
Cite this article
References
1.
Lin K L, Haas C T. An interactive planning environment for critical operations. Journal of Construction Engineering and Management, 1996, 122(3): 212‒222 DOI:10.1061/(asce)0733-9364(1996)122:3(212)
2.
Varghese K, Dharwadkar P, Wolfhope J, O'Connor J T. A heavy lift planning system for crane lifts. Computer-Aided Civil and Infrastructure Engineering, 1997, 12(1): 31‒42 DOI:10.1111/0885-9507.00044
3.
Al-Hussein M, Athar Niaz M, Yu H T, Kim H. Integrating 3D visualization and simulation for tower crane operations on construction sites. Automation in Construction, 2006, 15(5): 554‒562 DOI:10.1016/j.autcon.2005.07.007
4.
Kang S C, Chi H L, Miranda E. Three-dimensional simulation and visualization of crane assisted construction erection processes. Journal of Computing in Civil Engineering, 2009, 23(6): 363‒371 DOI:10.1061/(asce)0887-3801(2009)23:6(363)
5.
Chadalavada S, Madras G, Varghese K. Development of a computer aided critical lift planning system using parametric modeling software. In: Proceedings of the 2010 (1st) International Conference on Engineering, Project, and Production Management, Association of Engineering, Project, and Production Management, 2010, 1–12 DOI:10.32738/ceppm.201010.0001
6.
Wang X, Lv Y L, Wu D. Development of tower crane simulation system with flexible wire rope. In: Proceedings of the 2015 International Symposium on Computers and Informatics. Beijing, China, Paris, France, Atlantis Press, 2015, 2416–2423 DOI:10.2991/isci-15.2015.314
7.
Sivakumar P, Varghese K, Babu N R. Path planning of construction manipulators using genetic algorithms. In: Proceedings of the 16th IAARC/IFAC/IEEE International Symposium on Automation and Robotics in Construction. Madrid, Spain. International Association for Automation and Robotics in Construction (IAARC), 1999, 555–560 DOI:10.22260/isarc1999/0086
8.
Ali M S A D, Babu N R, Varghese K. Collision free path planning of cooperative crane manipulators using genetic algorithm. Journal of Computing in Civil Engineering, 2005, 19(2): 182–193 DOI:10.1061/(asce)0887-3801(2005)19:2(182)
9.
Reddy H R, Varghese K. Automated path planning for mobile crane lifts. Computer-Aided Civil and Infrastructure Engineering, 2002, 17(6): 439–448 DOI:10.1111/0885-9507.00005
10.
Olearczyk J, Bouferguène A, Al-Hussein M, Hermann U R. Automating motion trajectory of crane-lifted loads. Automation in Construction, 2014, 45: 178–186 DOI:10.1016/j.autcon.2014.06.001
11.
Lin Y S, Wu D, Wang X, Wang X K, Gao S D. Lift path planning for a nonholonomic crawler crane. Automation in Construction, 2014, 44: 12–24 DOI:10.1016/j.autcon.2014.03.007
12.
AUTODESK. Plant Design Suite. http://www.autodesk.com/suites/plant-design-suite/overview. 2016-1-4
13.
AVEVA. Solutions for the plant industries. http://www.aveva.com/en/Products_and_Services/AVEVA_for_Plant.aspx. 2016-1-4
14.
INTERGRAPH. SmartPlant® Enterprise. http://www.intergraph.com/products/ppm/smartplant/. 2016-1-4
15.
Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J, Hodges S, Freeman D, Davison A, Fitzgibbon A. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. ACM, New York, USA, 2011, 559–568
16.
Henry P, Krainin M, Herbst E, Ren X F, Fox D. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. The International Journal of Robotics Research, 2012, 31(5): 647–663 DOI:10.1177/0278364911434148
17.
Hornung A, Wurm K M, Bennewitz M, Stachniss C, Burgard W. OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 2013, 34(3): 189–206 DOI:10.1007/s10514-012-9321-0
18.
Olearczyk J, Al-Hussein M, Bouferguène A. Evolution of the crane selection and on-site utilization process for modular construction multilifts. Automation in Construction, 2014, 43: 59–72 DOI:10.1016/j.autcon.2014.03.015
19.
Marzouk M, Abubakr A. Decision support for tower crane selection with building information models and genetic algorithms. Automation in Construction, 2016, 61: 1–15 DOI:10.1016/j.autcon.2015.09.008
20.
Huang C, Wong C K, Tam C M. Optimization of tower crane and material supply locations in a high-rise building site by mixed-integer linear programming. Automation in Construction, 2011, 20(5): 571–580 DOI:10.1016/j.autcon.2010.11.023
21.
Lien L C, Cheng M Y. Particle bee algorithm for tower crane layout with material quantity supply and demand optimization. Automation in Construction, 2014, 45: 25–32 DOI:10.1016/j.autcon.2014.05.002
22.
Wang J, Zhang X D, Shou W C, Wang X Y, Xu B, Kim M J, Wu P. A BIM-based approach for automated tower crane layout planning. Automation in Construction, 2015, 59: 168–178 DOI:10.1016/j.autcon.2015.05.006
23.
Carricato M, Merlet J P. Stability analysis of underconstrained cable-driven parallel robots. IEEE Transactions on Robotics, 2013, 29(1): 288–296 DOI:10.1109/tro.2012.2217795
24.
Gouttefarde M, Collard J F, Riehl N, Baradat C. Geometry selection of a redundantly actuated cable-suspended parallel robot. IEEE Transactions on Robotics, 2015, 31(2): 501–510 DOI:10.1109/tro.2015.2400253
25.
Park J, Chung W K, Moon W. Wire-suspended dynamical system: stability analysis by tension-closure. IEEE Transactions on Robotics, 2005, 21(3): 298–308 DOI:10.1109/tro.2004.840888
26.
Oh S R, Agrawal S K. Cable suspended planar robots with redundant cables: controllers with positive tensions. IEEE Transactions on Robotics, 2005, 21(3): 457–465 DOI:10.1109/tro.2004.838029
27.
Kang S, Miranda E. Planning and visualization for automated robotic crane erection processes in construction. Automation in Construction, 2006, 15(4): 398–414 DOI:10.1016/j.autcon.2005.06.008
28.
Chang Y C, Hung W H, Kang S C. A fast path planning method for single and dual crane erections. Automation in Construction, 2012, 22: 468–480 DOI:10.1016/j.autcon.2011.11.006
29.
Cai P P, Cai Y Y, Chandrasekaran I, Zheng J M. A GPU-enabled parallel genetic algorithm for path planning of robotic operators//GPU Computing and Applications. Singapore: Springer Singapore, 2014, 1–13 DOI:10.1007/978-981-287-134-3_1
30.
Cai P P, Cai Y Y, Chandrasekaran I, Zheng J M. Parallel genetic algorithm based automatic path planning for crane lifting in complex environments. Automation in Construction, 2016, 62: 133–147 DOI:10.1016/j.autcon.2015.09.007
31.
Huang L H, Zhang Y Z, Zheng J M, Cai P P, Dutta S, Yue Y F, Thalmann N, Cai Y Y. Point cloud based path planning for tower crane lifting. In: Proceedings of Computer Graphics International. Bintan, Island, Indonesia, ACM Press, 2018, 211–215 DOI:10.1145/3208159.3208186
32.
Cai Y Y, Zheng J M, Zhang Y Z, Wu X Q, Chen Y, Tan B Q, Yang B Y, Liu T R, Thalmann N. Madam snake white: a case study on virtual reality continuum applications for Singaporean culture and heritage at haw par villa. Presence: Teleoperators and Virtual Environments, 2018, 26(4): 378–388 DOI:10.1162/pres_a_00303
33.
Golovinskiy A, Funk T. Min-cut based segmentation of point clouds. In: 2009 IEEE 12th International Conference on Computer Vision Workshops. Kyoto, Japan, IEEE, 2009 DOI:10.1109/iccvw.2009.5457721
34.
Rost RJ, Licea-Kane B. Chapter 1. Review of OpenGL Basics. In: OpenGL Shading Language, 3rd edn. Boston, MA, Addison-Wesley, 2009, 1–34
35.
NVIDIA. CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3wRH77NnU. 2015-10-3
36.
Bouaziz S, Tagliasacchi A, Pauly M. Sparse iterative closest point. In: SGP'13 Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing. 2013, 113–123
Related
1. Zhiyuan ZHANG, Yuchao DAI, Jiadai SUN, Deep learning based point cloud registration: an overview Virtual Reality & Intelligent Hardware 2020, 2(3): 222-246
2. Pingbo HU, Bisheng YANG, Visual perception driven 3D building structure representa-tion from airborne laser scanning point cloud Virtual Reality & Intelligent Hardware 2020, 2(3): 261-275
3. Fanfan WU, Feihu YAN, Weimin SHI, Zhong ZHOU, 3D scene graph prediction from point clouds Virtual Reality & Intelligent Hardware 2022, 4(1): 76-88