2019, 1(5): 500-510
Published Date:2019-10-20 DOI: 10.1016/j.vrih.2019.09.004
Bags of tricks for learning depth and camera motion from monocular videos
Abstract
Keyword
Cite this article
References
1.
Zhou T H, Brown M, Snavely N, Lowe D G. Unsupervised learning of depth and ego-motion from video. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017 DOI:10.1109/cvpr.2017.700
2.
Wang C Y, Buenaposada J M, Zhu R, Lucey S. Learning depth from monocular videos using direct methods. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvpr.2018.00216
3.
Tang C, Tan P. BA-Net: Dense Bundle Adjustment Networks. In: International Conference on Learning Representation (ICLR). 2019
4.
Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research, 2013, 32(11): 1231–1237 DOI:10.1177/0278364913491297
5.
Eigen D, Puhrsch C, Fergus R. Depth Map Prediction from a Single Image using a Multi-scale Deep Network. Advances in Neural Information Processing Systems (NIPS), 2014, 2366–2374
6.
Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600–612 DOI:10.1109/tip.2003.819861
7.
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition. arXiv preprint arXiv:1409.1556, 2014
8.
Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution//Computer Vision–ECCV 2016. Cham: Springer International Publishing, 2016, 694–711 DOI:10.1007/978-3-319-46475-6_43
9.
Casser V, Pirk S, Mahjourian R, Angelova A. Depth prediction without the sensors: leveraging structure for unsupervised learning from monocular videos. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 8001–8008 DOI:10.1609/aaai.v33i01.33018001
10.
Godard C, Aodha O M, Brostow G J. Unsupervised monocular depth estimation with left-right consistency. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017 DOI:10.1109/cvpr.2017.699
11.
Yin Z C, Shi J P. GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvpr.2018.00212
12.
Meister S, Hur J, Roth S. UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss. In: Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), 2018
13.
Cao Z, Kar A, Hane C, Malik J. Learning Independent Object Motion from Unlabelled Stereoscopic Videos. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, 5594–5603
14.
Lv Z, Kim K, Troccoli A, Sun D Q, Rehg J M, Kautz J. Learning rigidity in dynamic scenes with a moving camera for 3D motion field estimation//Computer Vision–ECCV 2018. Cham: Springer International Publishing, 2018, 484–501 DOI:10.1007/978-3-030-01228-1_29
15.
Yang Z H, Wang P, Wang Y, Xu W, Nevatia R. Every pixel counts: unsupervised geometry learning with holistic 3D motion understanding//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019, 691–709 DOI:10.1007/978-3-030-11021-5_43
16.
Ranjan A, Jampani V, Balles L, Kim K, Sun D, Wulff J, Black M J. Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, 12240–12249
17.
Zou Y L, Luo Z L, Huang J B. DF-net: unsupervised joint learning of depth and flow using cross-task consistency//Computer Vision–ECCV 2018. Cham: Springer International Publishing, 2018, 38–55 DOI:10.1007/978-3-030-01228-1_3
18.
Sun D Q, Yang X D, Liu M Y, Kautz J. PWC-net: CNNs for optical flow using pyramid, warping, and cost volume. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvpr.2018.00931
19.
Liu F Y, Shen C H, Lin G S, Reid I. Learning Depth from Single Monocular Images using Deep Convolutional Neural Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2016, 38(10), 2024–2039
20.
Garg R, Vijay K B G, Carneiro G, Reid I. Unsupervised CNN for single view depth estimation: geometry to the rescue//Computer Vision–ECCV 2016. Cham: Springer International Publishing, 2016, 740–756 DOI:10.1007/978-3-319-46484-8_45
21.
Luo H, Yang Z, Wang Y, Xu W, Nevatia R, Yuille A L. Every Pixel Counts++: Joint Learning of Geometry and Motion with 3D Holistic Understanding. arXiv preprint arXiv:1810.06125, 2018