Flow-based SLAM: From geometry computation to learning
Key Laboratory of Machine Perception (MOE), Peking University, Beijing 100871, China
Abstract
Keywords: Simultaneous localization and mapping ; Visual odometry ; Deep learning ; Flow basis ; Sensor fusion ; Augmented reality
Content
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F001.png)
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F002.png)
Reference | Representation | Matching |
Sparse/ dense |
Direct/ indirect |
Descriptor-based/ flow-based |
---|---|---|---|---|---|
MonoSLAM[18] | Shi-Tomasi corner point | Patch descriptor (NCC) | Sparse | Indirect | Descriptor-based |
PTAM[19] | Shi-Tomasi corner point | Patch descriptor (SSD) | Sparse | Indirect | Descriptor-based |
ORB-SLAM[14] | FAST feature | ORB descriptor | Sparse | Indirect | Descriptor-based |
LSD-SLAM[16] | Edge points | OF on SE3 | Semi-dense | Direct | Flow-based |
StructSLAM[15] | Struct line | Patch descriptor (ZNCC) | Sparse | Indirect | Descriptor-based |
PL-SLAM[20] | ORB feature+ line feature[21] | ORB and LBD[22] descriptors | Sparse | Indirect | Descriptor-based |
VINS[23] | Shi-Tomasi corner point | KLT tracker[24] | Sparse | Indirect | Flow-based |
ElasticFusion[17] | Dense pixels | OF on SE3 | Dense | Direct | Flow-based |
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F003.png)
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F004.png)
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F008.png)
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F005.png)
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F009.png)
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F010.png)
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F006.png)
Supervisory | Reference | Input data | Architecture | Use of optical flow | Novel loss function |
---|---|---|---|---|---|
Unsupervised | SfMLearner[93] | Image triplet | CNN |
Training-data rejection with mean optical flow magnitude |
Warping loss |
Depth-VO-Feat[94] | Image pair | CNN | - | Feature reconstruction loss | |
UnDeepVO[95] | Image pair | CNN | - | Stereo imagery for supervision | |
Vid2Depth[96] | Image pair | CNN | - | 3D ICP loss | |
GeoNet[97] | Image pair | CNN |
Joint estimation of rigid flow and residual flow |
Geometric consistency check | |
UnDeMoN[98] | Image pair | CNN | - | Charbonnier penalty | |
GANVO[99] | Image triplet | RNN+GAN | - | GAN loss | |
Supervised | P-CNN[100] | Optical flow | CNN | Optical flow to pose | Root mean squared loss |
DeepVO[101] | Video | RNN | FlowNet[102] encoder | Mean squared loss | |
ESP-VO[103] | Video | RNN | FlowNet encoder | Covariance incorporation | |
DeMoN[104] | Image pair | CNN | Optical flow as a supervised output | - | |
DeepTAM[105] | Image pair | CNN | Optical flow as an auxiliary task | Uncertainty loss | |
GFS-VO[106] | Video | RNN | FlowNet encoder | Separate rotation and translation loss | |
L-VO[107] | Image pair | CNN | 2.5D scene flow to pose | Bivariate Gaussian loss | |
VOMachine[108] | Video | RNN | FlowNet encoder | Global and local losses |
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F007.png)
/2019.0026/alternativeImage/daed1f93-7fe7-4069-a705-768096a97454-F011.png)
Reference
Schonberger J L, Radenovic F, Chum O, Frahm J M. From single image query to detailed 3D reconstruction. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, IEEE, 2015 DOI:10.1109/cvpr.2015.7299148
Engel J, Schöps T, Cremers D. LSD-SLAM: large-scale direct monocular SLAM//Computer Vision―ECCV 2014. Cham: Springer International Publishing, 2014, 834–849 DOI:10.1007/978-3-319-10605-2_54
Newcombe R A, Lovegrove S J, Davison A J. DTAM: Dense tracking and mapping in real-time. In: 2011 International Conference on Computer Vision. Barcelona, Spain, IEEE, 2011 DOI:10.1109/iccv.2011.6126513
Saputra M R U, Markham A, Trigoni N. Visual SLAM and structure from motion in dynamic environments. ACM Computing Surveys, 2018, 51(2): 1–36 DOI:10.1145/3177853
Strasdat H, Montiel J M M, Davison A J. Real-time monocular SLAM: Why filter? In: 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, NewYork, USA, IEEE, 2010 DOI:10.1109/robot.2010.5509636
Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics & Automation Magazine, 2006, 13(3): 108–117 DOI:10.1109/mra.2006.1678144
Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine, 2006, 13(2): 99–110 DOI:10.1109/mra.2006.1638022
Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard J J. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Transactions on Robotics, 2016, 32(6): 1309–1332 DOI:10.1109/tro.2016.2624754
Dellaert F, Kaess M. Factor graphs for robot perception. Foundations and Trends in Robotics, 2017, 6(1/2): 1–139 DOI:10.1561/2300000043
Grisetti G, Kummerle R, Stachniss C, Burgard W. A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2010, 2(4): 31–43 DOI:10.1109/mits.2010.939925
Bresson G, Alsayed Z, Yu L, Glaser S. Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles, 2017, 2(3): 194–220 DOI:10.1109/tiv.2017.2749181
Haarbach A, Birdal T, Ilic S. Survey of higher order rigid body motion interpolation methods for keyframe animation and continuous-time trajectory estimation. In: 2018 International Conference on 3D Vision (3DV). Verona, NewYork, USA, IEEE, 2018 DOI:10.1109/3dv.2018.00051
Li J, Yang B, Chen D, Wang N, Zhang G F, Bao H J. Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality. Virtual Reality and Intelligent Hardware, 2019, 1(1): 386–410 DOI:10.1016/j.vrih.2019.07.002
Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 2015, 31(5): 1147–1163 DOI:10.1109/tro.2015.2463671
Zhou H Z, Zou D P, Pei L, Ying R D, Liu P L, Yu W X. StructSLAM: visual SLAM with building structure lines. IEEE Transactions on Vehicular Technology2015, 64(4): 1364–1375 DOI:10.1109/tvt.2015.2388780
Engel J, Stuckler J, Cremers D. Large-scale direct SLAM with stereo cameras. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, IEEE, 2015 DOI:10.1109/iros.2015.7353631
Whelan T, Salas-Moreno R F, Glocker B, Davison A J, Leutenegger S. ElasticFusion: Real-time dense SLAM and light source estimation. The International Journal of Robotics Research, 2016, 35(14): 1697–1716 DOI:10.1177/0278364916669237
Davison A J, Reid I D, Molton N D, Stasse O. MonoSLAM: real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052–1067 DOI:10.1109/tpami.2007.1049
Klein G, Murray D. Parallel tracking and mapping for small AR workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan, IEEE, 2007 DOI:10.1109/ismar.2007.4538852
Pumarola A, Vakhitov A, Agudo A, Sanfeliu A, Moreno-Noguer F. PL-SLAM: Real-time monocular visual SLAM with points and lines. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore, Singapore, IEEE, 2017 DOI:10.1109/icra.2017.7989522
von Gioi R G, Jakubowicz J, Morel J M, Randall G. LSD: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722–732 DOI:10.1109/tpami.2008.300
Zhang L L, Koch R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. Journal of Visual Communication and Image Representation, 2013, 24(7): 794–805 DOI:10.1016/j.jvcir.2013.05.006
Qin T, Li P L, Shen S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 2018, 34(4): 1004–1020 DOI:10.1109/tro.2018.2853729
Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. Proceedings of the 7th international joint conference on Artificial intelligence,1981, 2, 674–679
Engel J, Koltun V, Cremers D. Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611–625 DOI:10.1109/tpami.2017.2658577
Mur-Artal R, Tardos J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255–1262 DOI:10.1109/tro.2017.2705103
Galvez-López D, Tardos J D. Bags of binary words for fast place recognition in image sequences. IEEE Transactions on Robotics, 2012, 28(5): 1188–1197 DOI:10.1109/tro.2012.2197158
Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381–395 DOI:10.1145/358669.358692
Baker S, Matthews I. Lucas-kanade 20 years on: A unifying framework. International Journal of Computer Vision, 2004, 56(3): 221–255 DOI:10.1023/b:visi.0000011205.11775.fd
Peasley B, Birchfield S. Replacing projective data association with Lucas-kanade for KinectFusion. In: 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, IEEE, 2013 DOI:10.1109/icra.2013.6630640
Vidal A R, Rebecq H, Horstschaefer T, Scaramuzza D. Ultimate SLAM? combining events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios. IEEE Robotics and Automation Letters, 2018, 3(2): 994–1001 DOI:10.1109/lra.2018.2793357
Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). HongKong, China, IEEE, 2014 DOI:10.1109/icra.2014.6906584
Kerl C, Sturm J, Cremers D. Robust odometry estimation for RGB-D cameras. In: 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013 DOI:10.1109/icra.2013.6631104
Park J, Zhou Q Y, Koltun V. Colored point cloud registration revisited. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, NewYork, USA, IEEE, 2017 DOI:10.1109/iccv.2017.25
Zhou Q Y, Park J, Koltun V. Fast global registration//Computer Vision―ECCV 2016. Cham: Springer International Publishing, 2016, 766–782 DOI:10.1007/978-3-319-46475-6_47
Glocker B, Shotton J, Criminisi A, Izadi S. Real-time RGB-D camera relocalization via randomized ferns for keyframe encoding. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(5): 571–583 DOI:10.1109/tvcg.2014.2360403
Cummins M, Newman P. FAB-MAP: probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research, 2008, 27(6): 647–665 DOI:10.1177/0278364908090961
Klein G, Murray D. Improving the agility of keyframe-based SLAM//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, 802–815 DOI:10.1007/978-3-540-88688-4_59
Lowry S, Sunderhauf N, Newman P, Leonard J J, Cox D, Corke P, Milford M J. Visual place recognition: A survey. IEEE Transactions on Robotics, 2016, 32(1): 1–19 DOI:10.1109/tro.2015.2496823
Maddern W, Milford M, Wyeth G. CAT-SLAM: probabilistic localisation and mapping using a continuous appearance-based trajectory. The International Journal of Robotics Research, 2012, 31(4): 429–451 DOI:10.1177/0278364912438273
Milford M J, Wyeth G F. SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights. In: 2012 IEEE International Conference on Robotics and Automation. StPaul, MN, USA, IEEE, 2012 DOI:10.1109/icra.2012.6224623
Angeli A, Filliat D, Doncieux S, Meyer J A. Fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 2008, 24(5): 1027–1037 DOI:10.1109/tro.2008.2004514
Kawewong A, Tongprasit N, Tangruamsub S, Hasegawa O. Online and incremental appearance-based SLAM in highly dynamic environments. The International Journal of Robotics Research, 2011, 30(1): 33–55 DOI:10.1177/0278364910371855
Khan S, Wollherr D. IBuILD: Incremental bag of Binary words for appearance based loop closure detection. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA, IEEE, 2015 DOI:10.1109/icra.2015.7139959
Tsintotas K A, Bampis L, Gasteratos A. Assigning visual words to places for loop closure detection. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, IEEE, 2018 DOI:10.1109/icra.2018.8461146
Davison A J. Real-time simultaneous localisation and mapping with a single camera. In: Proceedings Ninth IEEE International Conference on Computer Vision. Nice, France, IEEE, 2003 DOI:10.1109/iccv.2003.1238654
Holmes S, Klein G, Murray D W. A square root unscented kalman filter for visual monoSLAM. In: 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA, IEEE, 2008 DOI:10.1109/robot.2008.4543780
Du J J, Carlone L, Kaouk Ng M, Bona B, Indri M. A comparative study on active SLAM and autonomous exploration with Particle Filters. In: 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Budapest, Hungary, IEEE, 2011 DOI:10.1109/aim.2011.6027142
Sibley G, Matthies L, Sukhatme G. Sliding window filter with application to planetary landing. Journal of Field Robotics, 2010, 27(5): 587–608 DOI:10.1002/rob.20360
Bailey T, Nieto J, Guivant J, Stevens M, Nebot E. Consistency of the EKF-SLAM algorithm. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, IEEE, 2006 DOI:10.1109/iros.2006.281644
Dissanayake G, Huang S D, Wang Z, Ranasinghe R. A review of recent developments in Simultaneous Localization and Mapping. In: 2011 6th International Conference on Industrial and Information Systems. Kandy, SriLanka, IEEE, 2011 DOI:10.1109/iciinfs.2011.6038117
Huang S D, Dissanayake G. A critique of current developments in simultaneous localization and mapping. International Journal of Advanced Robotic Systems, 2016, 13(5): 172988141666948 DOI:10.1177/1729881416669482
Huang G P, Mourikis A I, Roumeliotis S I. A first-estimates Jacobian EKF for improving SLAM consistency// Experimental Robotics. Berlin, Heidelberg, 2009, 373–382 DOI:10.1007/978-3-642-00196-3_43
Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In: National Conf. on Artificial Intelligence (AAAI), 2002, 593598
Thrun S, Liu Y F, Koller D, Ng A Y, Ghahramani Z, Durrant-Whyte H. Simultaneous localization and mapping with sparse extended information filters. The International Journal of Robotics Research, 2004, 23(7/8): 693–716 DOI:10.1177/0278364904045479
Huang S D, Wang Z, Dissanayake G. Sparse local submap joining filter for building large-scale maps. IEEE Transactions on Robotics, 2008, 24(5): 1121–1130 DOI:10.1109/tro.2008.2003259
Lenac K, Ćesić J, Marković I, Petrović I. Exactly sparse delayed state filter on Lie groups for long-term pose graph SLAM. The International Journal of Robotics Research, 2018, 37(6): 585–610 DOI:10.1177/0278364918767756
Thrun S, Burgard W, Fox D. Probabilistic robotics. MIT press, 2005
Dellaert F, Kaess M. Square root SAM: simultaneous localization and mapping via square root information smoothing. The International Journal of Robotics Research, 2006, 25(12): 1181–1203 DOI:10.1177/0278364906072768
Kummerle R, Grisetti G, Strasdat H, Konolige K, Burgard W. G2o: A general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation. Shanghai, China, IEEE, 2011 DOI:10.1109/icra.2011.5979949
Agarwal S, K.Others Mierle, CeresSolver. 2015
Sibley G, Sukhatme G S, Matthies L. Constant time sliding window filter SLAM as a basis for metric visual perception. In: IEEE International Conference on Robotics and Automation Workshop. 2007
Dong-Si T C, Mourikis A I. Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis. In: 2011 IEEE International Conference on Robotics and Automation2. Shanghai, China, IEEE, 2011 DOI:10.1109/icra.2011.5980267
Huang G P, Mourikis A I, Roumeliotis S I. An observability-constrained sliding window filter for SLAM. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. SanFrancisco, CA, USA, IEEE, 2011 DOI:10.1109/iros.2011.6095161
Kaess M, Ranganathan A, Dellaert F. ISAM: incremental smoothing and mapping. IEEE Transactions on Robotics, 2008, 24(6): 1365–1378 DOI:10.1109/tro.2008.2006706
Wang X P, Marcotte R, Ferrer G, Olson E. ApriISAM: real-time smoothing and mapping. In: 2018 IEEE International Conference on Robotics and Automation (ICRA).risbane, QLD. New York, USA: IEEE, 2018 DOI:10.1109/icra.2018.8461072
Kaess M, Johannsson H, Roberts R, Ila V, Leonard J J, Dellaert F. ISAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 2012, 31(2): 216–235 DOI:10.1177/0278364911430419
Ila V, Polok L, Solony M, Svoboda P. SLAM++-A highly efficient and temporally scalable incremental SLAM framework. The International Journal of Robotics Research, 2017, 36(2): 210–230 DOI:10.1177/0278364917691110
Hinton G E. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507 DOI:10.1126/science.1127647
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444 DOI:10.1038/nature14539
Detone D, Malisiewicz T, Rabinovich A. Toward geometric deep SLAM. arXiv preprint arXiv:1707.07410, 2017
Tang J X, Ericson L, Folkesson J, Jensfelt P. GCNv2: efficient correspondence prediction for real-time SLAM. IEEE Robotics and Automation Letters, 2019: 1 DOI:10.1109/lra.2019.2927954
Zeng A, Song S R, NieBner M, Fisher M, Xiao J X, Funkhouser T. 3DMatch: learning local geometric descriptors from RGB-D reconstructions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017 DOI:10.1109/cvpr.2017.29
Yi K M, Trulls E, Lepetit V, Fua P. LIFT: learned invariant feature transform// Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016, 467–483 DOI:10.1007/978-3-319-46466-4_28
DeTone D, Malisiewicz T, Rabinovich A. SuperPoint: self-supervised interest point detection and description. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvprw.2018.00060
Verdie Y, Yi K M, Fua P, Lepetit V. TILDE: A temporally invariant learned DEtector. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, IEEE, 2015 DOI:10.1109/cvpr.2015.7299165
Jayaraman D, Grauman K. Learning image representations tied to ego-motion. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, 2015 DOI:10.1109/iccv.2015.166
Agrawal P, Carreira J, Malik J. Learning to see by moving. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, 2015 DOI:10.1109/iccv.2015.13
Schmidt U, Roth S. Learning rotation-aware features: From invariant priors to equivariant descriptors. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, IEEE, 2012. DOI:10.1109/cvpr.2012.6247909
Lenc K, Vedaldi A. Understanding image representations by measuring their equivariance and equivalence. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, IEEE, 2015 DOI:10.1109/cvpr.2015.7298701
Luo W, Li Y, Urtasun R, Zemel R. Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS). 2016, 4898–4906
Lianos K N, Schönberger J L, Pollefeys M, Sattler T. VSO: visual semantic odometry// Computer Vision―ECCV 2018. Cham: Springer International Publishing, 2018, 246–263 DOI:10.1007/978-3-030-01225-0_15
Barsan I A, Liu P D, Pollefeys M, Geiger A. Robust dense mapping for large-scale dynamic environments. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia, IEEE, 2018 DOI:10.1109/icra.2018.8462974
Sunderhauf N, Pham T T, Latif Y, Milford M, Reid I. Meaningful maps with object-oriented semantic mapping. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada, IEEE, 2017 DOI:10.1109/iros.2017.8206392
Dame A, Prisacariu V A, Ren C Y, Reid I. Dense reconstruction using 3D object shape priors. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA, IEEE, 2013 DOI:10.1109/cvpr.2013.170
Salas-Moreno R F, Newcombe R A, Strasdat H, Kelly P H J, Davison A J. SLAM++: simultaneous localisation and mapping at the level of objects. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA, IEEE, 2013 DOI:10.1109/cvpr.2013.178
McCormac J, Handa A, Davison A, Leutenegger S. SemanticFusion: Dense 3D semantic mapping with convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore, Singapore, IEEE, 2017 DOI:10.1109/icra.2017.7989538
Eigen D, Puhrsch C, Fergus R. Depth map prediction from a single image using a multi-scale deep network. Proceedings of the 27th International Conference on Neural Information Processing Systems,2014, 2: 2366–2374
Tateno K, Tombari F, Laina I, Navab N. CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017 DOI:10.1109/cvpr.2017.695
Yin X C, Wang X W, Du X G, Chen Q J. Scale recovery for monocular visual odometry using depth estimated with deep convolutional neural Fields. In: 2017 IEEE International Conference on Computer Vision (ICCV. Venice, Italy, IEEE, 2017 DOI:10.1109/iccv.2017.625
Tang J X, Folkesson J, Jensfelt P. Sparse2Dense: from direct sparse odometry to dense 3-D reconstruction. IEEE Robotics and Automation Letters, 2019, 4(2): 530–537 DOI:10.1109/lra.2019.2891433
Bloesch M, Czarnowski J, Clark R, Leutenegger S, Davison A J. CodeSLAM―learning a compact, optimisable representation for dense visual SLAM. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvpr.2018.00271
Zhou T H, Brown M, Snavely N, Lowe D G. Unsupervised learning of depth and ego-motion from video. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017 DOI:10.1109/cvpr.2017.700
Zhan H Y, Garg R, Weerasekera C S, Li K J, Agarwal H, Reid I M. Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvpr.2018.00043
Li R H, Wang S, Long Z Q, Gu D B. UnDeepVO: monocular visual odometry through unsupervised deep learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, USA, IEEE, 2018 DOI:10.1109/icra.2018.8461251
Mahjourian R, Wicke M, Angelova A. Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvpr.2018.00594
Yin Z C, Shi J P. GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvpr.2018.00212
Madhu Babu V, Das K, Majumdar A, Kumar S. UnDEMoN: unsupervised deep network for depth and ego-motion estimation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain, USA, IEEE, 2018 DOI:10.1109/iros.2018.8593864
Almalioglu Y, Saputra M R U, de Gusmao P P B, Markham A, Trigoni N. GANVO: unsupervised deep monocular visual odometry and depth estimation with generative adversarial networks. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada, IEEE, 2019 DOI:10.1109/icra.2019.8793512
Costante G, Mancini M, Valigi P, Ciarfuglia T A. Exploring representation learning with CNNs for frame-to-frame ego-motion estimation. IEEE Robotics and Automation Letters, 2016, 1(1): 18–25 DOI:10.1109/lra.2015.2505717
Wang S, Clark R, Wen H K, Trigoni N. DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore, Singapore, IEEE, 2017 DOI:10.1109/icra.2017.7989236
Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, van der Smagt P, Cremers D, Brox T. FlowNet: learning optical flow with convolutional networks. In: 2015 IEEE International Conference on Computer Vision. Santiago, Chile, IEEE, 2015 DOI:10.1109/iccv.2015.316
Wang S, Clark R, Wen H K, Trigoni N. End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks. The International Journal of Robotics Research, 2018, 37(4/5): 513–542 DOI:10.1177/0278364917734298
Ummenhofer B, Zhou H Z, Uhrig J, Mayer N, Ilg E, Dosovitskiy A, Brox T. DeMoN: depth and motion network for learning monocular stereo. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu, HI, USA, IEEE, 2017 DOI:10.1109/cvpr.2017.596
Zhou H Z, Ummenhofer B, Brox T. DeepTAM: deep tracking and mapping// Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018, 851–868 DOI:10.1007/978-3-030-01270-0_50
Xue F, Wang Q Y, Wang X, Dong W, Wang J Q, Zha H B. Guided feature selection for deep visual odometry// Computer Vision―ACCV 2018. Cham: Springer International Publishing, 2019, 293–308 DOI:10.1007/978-3-030-20876-9_19
Zhao C, Sun L, Purkait P, Duckett T, Stolkin R. Learning monocular visual odometry with dense 3D mapping from dense 3D flow. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain, IEEE, 2018 DOI:10.1109/iros.2018.8594151
Xue F, Wang X, Li S, Wang Q, Wang J, Zha H. Beyond tracking: selecting memory and refining poses for deep visual odometry. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, 8575–8583
Kendall A, Grimes M, Cipolla R. PoseNet: A convolutional network for real-time 6-DOF camera relocalization. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, 2015 DOI:10.1109/iccv.2015.336
Brahmbhatt S, Gu J W, Kim K, Hays J, Kautz J. Geometry-aware learning of maps for camera localization. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvpr.2018.00277
Sattler T, Leibe B, Kobbelt L. Efficient & effective prioritized matching for large-scale image-based localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9): 1744–1756 DOI:10.1109/tpami.2016.2611662
Sattler T, Zhou Q, Pollefeys M, Leal-Taixe L. Understanding the limitations of CNN-based absolute camera pose regression. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2019, 3302–3312
Lai H, Tsai Y, Chiu W. Bridging Stereo Matching and Optical Flow via Spatiotemporal Correspondence. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2019, 1890–1899
Kendall A, Cipolla R. Modelling uncertainty in deep learning for camera relocalization. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden, IEEE, 2016 DOI:10.1109/icra.2016.7487679
Kendall A, Cipolla R. Geometric loss functions for camera pose regression with deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017 DOI:10.1109/cvpr.2017.694
Walch F, Hazirbas C, Leal-Taixe L, Sattler T, Hilsenbeck S, Cremers D. Image-based localization using LSTMs for structured feature correlation. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, IEEE, 2017 DOI:10.1109/iccv.2017.75
Clark R, Wang S, Markham A, Trigoni N, Wen H K. VidLoc: A deep spatio-temporal model for 6-DoF video-clip relocalization. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, Italy, IEEE, 2017 DOI:10.1109/cvpr.2017.284
Mourikis A I, Roumeliotis S I. A multi-state constraint kalman filter for vision-aided inertial navigation. In: Proceedings 2007 IEEE International Conference on Robotics and Automation. Rome, Italy, IEEE, 2007 DOI:10.1109/robot.2007.364024
Usenko V, Engel J, Stuckler J, Cremers D. Direct visual-inertial odometry with stereo cameras. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden, 2016 DOI:10.1109/icra.2016.7487335
von Stumberg L, Usenko V, Cremers D. Direct sparse visual-inertial odometry using dynamic marginalization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia, IEEE, 2018 DOI:10.1109/icra.2018.8462905
Bloesch M, Burri M, Omari S, Hutter M, Siegwart R. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback. The International Journal of Robotics Research, 2017, 36(10): 1053–1072 DOI:10.1177/0278364917728574
Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-based visual–inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015, 34(3): 314–334 DOI:10.1177/0278364914554813
Mur-Artal R, Tardos J D. Visual-inertial monocular SLAM with map reuse. IEEE Robotics and Automation Letters, 2017, 2(2): 796–803 DOI:10.1109/lra.2017.2653359
Weikersdorfer D, Hoffmann R, Conradt J. Simultaneous localization and mapping for event-based vision systems// Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, 133–142 DOI:10.1007/978-3-642-39402-7_14
Brandli C, Berner R, Yang M H, Liu S C, Delbruck T. A 240 × 180 130 dB 3 µs latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits, 2014, 49(10): 2333–2341 DOI:10.1109/jssc.2014.2342715
Kueng B, Mueggler E, Gallego G, Scaramuzza D. Low-latency visual odometry using event-based feature tracks. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, SouthKorea, IEEE, 2016 DOI:10.1109/iros.2016.7758089
Kim H, Leutenegger S, Davison A J. Real-time 3D reconstruction and 6-DoF tracking with an event camera// Computer Vision―ECCV 2016. Cham: Springer International Publishing, 2016, 349–364 DOI:10.1007/978-3-319-46466-4_21
Rebecq H, Horstschaefer T, Gallego G, Scaramuzza D. EVO: A geometric approach to event-based 6-DOF parallel tracking and mapping in real time. IEEE Robotics and Automation Letters, 2017, 2(2): 593–600 DOI:10.1109/lra.2016.2645143
Weikersdorfer D, Adrian D B, Cremers D, Conradt J. Event-based 3D SLAM with a depth-augmented dynamic vision sensor. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). HongKong, China, IEEE, 2014 DOI:10.1109/icra.2014.6906882
Milford M, Kim H, Leutenegger S, Davison A. Towards visual SLAM with event-based cameras place recognition on event data using SeqSLAM. In: The problem of mobile sensors workshop in conjunction with RSS. 2015
Ovren H, Forssen P E. Spline error weighting for robust visual-inertial fusion. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018 DOI:10.1109/cvpr.2018.00041
Mueggler E, Gallego G, Rebecq H, Scaramuzza D. Continuous-time visual-inertial odometry for event cameras. IEEE Transactions on Robotics, 2018, 34(6): 1425–1440 DOI:10.1109/tro.2018.2858287
Anderson S, Barfoot T D. Towards relative continuous-time SLAM. In: 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, IEEE, 2013 DOI:10.1109/icra.2013.6630700
Kerl C, Stuckler J, Cremers D. Dense continuous-time tracking and mapping with rolling shutter RGB-D cameras. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, 2015 DOI:10.1109/iccv.2015.261
Furgale P, Tong C H, Barfoot T D, Sibley G. Continuous-time batch trajectory estimation using temporal basis functions. The International Journal of Robotics Research, 2015, 34(14): 1688–1710 DOI:10.1177/0278364915585860
Lovegrove S, Patron-Perez A, Sibley G. Spline Fusion: A continuous-time representation for visual-inertial fusion with application to rolling shutter cameras. In: Procedings of the British Machine Vision Conference 2013. Bristol, UK, 2013 DOI:10.5244/c.27.93
Tong C H, Furgale P, Barfoot T D. Gaussian Process Gauss–Newton for non-parametric simultaneous localization and mapping. The International Journal of Robotics Research, 2013, 32(5): 507–525 DOI:10.1177/0278364913478672
Anderson S, Dellaert F, Barfoot T D. A hierarchical wavelet decomposition for continuous-time SLAM. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). HongKong, China, IEEE, 2014 DOI:10.1109/icra.2014.6906884
Anderson S, Barfoot T D, Tong C H, Särkkä S. Batch nonlinear continuous-time trajectory estimation as exactly sparse Gaussian process regression. Autonomous Robots, 2015, 39(3): 221–238 DOI:10.1007/s10514-015-9455-y
Barfoot T, Hay Tong C, Sarkka S. Batch continuous-time trajectory estimation as exactly sparse Gaussian process regression. In: Robotics: Science and Systems X, Robotics: Science and Systems Foundation, 2014 DOI:10.15607/rss.2014.x.001
Yan X Y, Indelman V, Boots B. Incremental sparse GP regression for continuous-time trajectory estimation and mapping. Robotics and Autonomous Systems, 2017, 87, 120–132 DOI:10.1016/j.robot.2016.10.004
Anderson S, Barfoot T D. Full STEAM ahead: Exactly sparse Gaussian process regression for batch continuous-time trajectory estimation on SE(3). In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, IEEE, 2015 DOI:10.1109/iros.2015.7353368