Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(2): 129-141

Published Date:2021-4-20 DOI: 10.1016/j.vrih.2018.12.001

Adaptive smoothing length method based on weighted average of neighboring particle density for SPH fluid simulation


In the smoothed particle hydrodynamics (SPH) fluid simulation method, the smoothing length affects not only the process of neighbor search but also the calculation accuracy of the pressure solver. Therefore, it plays a crucial role in ensuring the accuracy and stability of SPH.
In this study, an adaptive SPH fluid simulation method with a variable smoothing length is designed. In this method, the smoothing length is adaptively adjusted according to the ratio of the particle density to the weighted average of the density of the neighboring particles. Additionally, a neighbor search scheme and kernel function scheme are designed to solve the asymmetry problems caused by the variable smoothing length.
The simulation efficiency of the proposed algorithm is comparable to that of some classical methods, and the variance of the number of neighboring particles is reduced. Thus, the visual effect is more similar to the corresponding physical reality.
The precision of the interpolation calculation performed in the SPH algorithm is improved using the adaptive-smoothing length scheme; thus, the stability of the algorithm is enhanced, and a larger timestep is possible.


Fluid simulation ; SPH ; Smoothing length ; Adaptive ; Particle density

Cite this article

Rongda ZENG, Zihao WU, Shengbang DENG, Jian ZHU, Xiaoyu CHI. Adaptive smoothing length method based on weighted average of neighboring particle density for SPH fluid simulation. Virtual Reality & Intelligent Hardware, 2021, 3(2): 129-141 DOI:10.1016/j.vrih.2018.12.001


1. Müller M, Solenthaler B, Keiser R, Gross M. Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation-SCA'05. Los Angeles, California, New York, ACM Press, 2005 DOI:10.1145/1073368.1073402

2. Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M. SPH fluids in computer graphics. Eurographics, 2014(2): 21–42 DOI:10.2312/egst.20141034

3. Koschier D, Bender J, Solenthaler B. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids. Eurographics, 2019 DOI:10.2312/egt.20191035

4. Adams B, Pauly M, Keiser R, Guibas L J. Adaptively sampled particle fluids. ACM Transactions on Graphics, 2007, 26(3): 48 DOI:10.1145/1276377.1276437

5. Chaniotis A K, Poulikakos D, Koumoutsakos P. Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. Journal of Computational Physics, 2002, 182(1): 67–90 DOI:10.1006/jcph.2002.7152

6. Lapenta G, Brackbill J U. Control of the number of particles in fluid and MHD particle in cell methods. Computer Physics Communications, 1995, 87(1/2): 139–154 DOI:10.1016/0010-4655(94)00180-a

7. Miller G, Pearce A. Globular dynamics: a connected particle system for animating viscous fluids. Computers & Graphics, 1989, 13(3): 305–309 DOI:10.1016/0097-8493(89)90078-2

8. Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389 DOI:10.1093/mnras/181.3.375

9. Shao S D, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 2003, 26(7): 787–800 DOI:10.1016/s0309-1708(03)00030-7

10. Ren B, Fan H F, Bergel G L, Regueiro R A, Lai X, Li S F. A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves. Computational Mechanics, 2015, 55(2): 287–302 DOI:10.1007/s00466-014-1101-6

11. Gong K, Shao S D, Liu H, Lin P Z, Gui Q Q. Cylindrical SPH simulations of water entry. Journal of Fluids Engineering, 2018, 141(7): 071303 DOI:10.1115/1.4042369

12. Kazemi E, Koll K, Tait S, Shao S D. SPH modelling of turbulent open channel flow over and within natural gravel beds with rough interfacial boundaries. Advances in Water Resources, 2020, 140: 103557 DOI:10.1016/j.advwatres.2020.103557

13. Becker M, Teschner M. Weakly compressible SPH for free surface flows. In: Proceedings of the Acm Siggraph/eurographics Symposium on Computer Animation. New York, Acm Press, 2007 DOI: 10.2312/SCA/SCA07/209-218

14. Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Transactions on Graphics, 2009, 28(3): 1–6 DOI:10.1145/1531326.1531346

15. Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(3): 426–435 DOI:10.1109/tvcg.2013.105

16. Angeles Los, California, York New, Press ACM, 2015, 147–155 DOI:10.1145/2786784.2786796

17. Bender J, Koschier D. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(3): 1193–1206 DOI:10.1109/tvcg.2016.2578335

18. Lastiwka M, Quinlan N, Basa M H. Adaptive particle distribution for smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 2005, 47(10/11): 1403–1409 DOI:10.1002/fld.891

19. Keiser R, Adams B, Dutré P. Multiresolution particle-based fluids. Swiss Federal Institute of Technology Zurich, Department of Computer Science, 2006 DOI:10.3929/ethz-a-006780981

20. Angeles Los, California, USA, IEEE, 2008 DOI:10.2312/VG/VG-PBG08/137-146

21. Orthmann J, Kolb A. Temporal blending for adaptive SPH. Computer Graphics Forum, 2012, 31(8): 2436–2449 DOI:10.1111/j.1467-8659.2012.03186.x

22. Desbrun M, Gascuel M P. Smoothed particles: a new paradigm for animating highly deformable bodies. Computer Animation and Simulation '96, 1996 DOI:10.1007/978-3-7091-7486-9_5

23. Ihmsen M, Akinci N, Gissler M. Boundary handling and adaptive time-stepping for PCISPH. The Eurographics Association, 2010 DOI:10.2312/PE/vriphys/vriphys10/079-088

24. Goswami P, Pajarola R. Time adaptive approximate SPH. In: Proceedings of the 8th Workshop on Virtual Reality Interactions and Physical Simulations, 2011 DOI: 10.2312/PE/vriphys/vriphys11/019-028

25. Gingold R A, Monaghan J J. Kernel estimates as a basis for general particle methods in hydrodynamics. Journal of Computational Physics, 1982, 46(3): 429–453 DOI:10.1016/0021-9991(82)90025-0

26. Nelson R P, Papaloizou J C B. Variable smoothing lengths and energy conservation in smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 1994, 270(1): 1–20 DOI:10.1093/mnras/270.1.1

27. Di L, Sigalotti G, Daza J, Donoso A. Modelling free surface flows with smoothed particle hydrodynamics. Condensed Matter Physics, 2006, 9(2): 359 DOI:10.5488/cmp.9.2.359

28. Olejnik M, Szewc K, Pozorski J. SPH with dynamical smoothing length adjustment based on the local flow kinematics. Journal of Computational Physics, 2017, 348: 23–44 DOI:10.1016/j.jcp.2017.07.023

29. Ren H L, Zhuang X Y, Rabczuk T. A dual-support smoothed particle hydrodynamics for weakly compressible fluid inspired by the dual-horizon peridynamics. Computer Modeling in Engineering & Sciences, 2019, 121(2): 353–383 DOI:10.32604/cmes.2019.05146

30. Harada T, Koshizuka S, Kawaguchi Y. Smoothed particle hydrodynamics on GPUs. Computer Graphics International, 2007, 40: 63–70 DOI:10.1142/S0219876207000972

31. Ihmsen M, Akinci N, Becker M, Teschner M. A parallel SPH implementation on multi-core CPUs. Computer Graphics Forum, 2011, 30(1): 99–112 DOI:10.1111/j.1467-8659.2010.01832.x

32. Sin F, Bargteil A W, Hodgins J K. A point-based method for animating incompressible flow. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation-SCA '09. New Orleans, Louisiana, New York, ACM Press, 2009, 247–255 DOI:10.1145/1599470.1599502

33. Hernquist L, Katz N. TREESPH-A unification of SPH with the hierarchical tree method. The Astrophysical Journal Letters Supplement Series, 1989, 70: 419 DOI:10.1086/191344

34. Gong X, Yang J, Zhang S. A parallel SPH method with background grid of adaptive mesh refinement. Chinese Journal of Computational Physics, 2016, 33(2):183-189 DOI:10.3969/j.issn.1001-246X.2016.02.008

35. Goswami P, Schlegel P, Solenthaler B, Pajarola R. Interactive SPH simulation and rendering on the GPU. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2010, 55–64 DOI:10.2312/SCA/SCA10/055-064

36. Macklin M, Müller M. Position based fluids. ACM Transactions on Graphics, 2013, 32(4): 1–12 DOI:10.1145/2461912.2461984

37. Hochstetter H, Kolb A. Evaporation and condensation of SPH-based fluids. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Los Angeles, California, New York, NY, USA, ACM, 2017 DOI:10.1145/3099564.3099580

38. Park S H, Jo Y B, Ahn Y, Choi H Y, Choi T S, Park S S, Yoo H S, Kim J W, Kim E S. Development of multi-GPU–based smoothed particle hydrodynamics code for nuclear thermal hydraulics and safety: potential and challenges. Frontiers in Energy Research, 2020, 8: 86 DOI:10.3389/fenrg.2020.00086

39. Morikawa D, Senadheera H, Asai M. Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations. Computational Particle Mechanics, 2020, 1–18 DOI:10.1007/s40571-020-00347-0


1. Qian CHEN, Yue WANG, Hui WANG, Xubo YANG, Data-driven simulation in fluids animation: A survey Virtual Reality & Intelligent Hardware 2021, 3(2): 87-104

2. Luan LYU, Wei CAO, Enhua WU, Zhixin YANG, Affine particle-in-cell method for two-phase liquid simulation Virtual Reality & Intelligent Hardware 2021, 3(2): 105-117

3. Zhongyao YANG, Maolin WU, Shiguang LIU, Helmholtz decomposition-based SPH Virtual Reality & Intelligent Hardware 2021, 3(2): 118-128